
The Changing Value of Employment and Its Implications*

Davide Alonzo� Giovanni Gallipoli�

February 2, 2024

Abstract

We estimate the components of worker-occupation match values within a model that

distinguishes between wages and latent returns. The equilibrium exhibits heterogeneous

rents and we derive a welfare measure that has three properties: (i) it illustrates the impact

of marginal workers on the welfare of everyone else; (ii) it delivers inequality measures that

account for non-wage values and compensating differentials; (iii) it relates welfare shifts

to changes in different match value components. We use this measure to show that similar

patterns of wage inequality can be associated with vastly different welfare outcomes.

JEL Codes: D51, D58, J2, J3, J62.

Keywords: employment; wages; equilibrium; technological change; heterogeneity; occupa-

tions.

*Gallipoli acknowledges support from the SSHRC of Canada.
�Department of Economics, Universite’ de Montreal, 3150 Rue Jean-Brillant, Montreal, H3T 1N8, Canada.

E-mail:davidealonzo03@gmail.com.
�Vancouver School of Economics, University of British Columbia, 6000 Iona Drive, Vancouver, BC V6T

1L4, Canada. E-mail:E-mail:gallipol@mail.ubc.ca.

mailto:davidealonzo03@gmail.com
gallipol@mail.ubc.ca


1 Introduction

Shifts in the structure of U.S. employment and earnings over the past five decades suggest a

rapidly changing environment where the fortunes of some workers rise while others stagnate.

This has prompted questions about what constitutes a favorable labor market outcome for

any group of workers. The early literature on inequality (Katz and Murphy, 1992; Heckman

et al., 1998; Katz and Autor, 1999; Krusell et al., 2000; Goldin and Katz, 2008; Autor et al.,

2006; Acemoglu and Autor, 2011) set the tone by focusing on the evolution of earnings for

workers classified by education, occupation or gender. This focus is reasonable since earnings

are a natural metric to approximate returns. There is, however, growing recognition that

other factors account for a significant part of the value that workers derive from jobs. For

example, job injuries suggest that earnings dispersion is an imperfect measure of US labor

market inequality in the 1990s (Hamermesh, 1999). Maestas et al. (2018) and Dube et al.

(2022) argue that employment conditions contribute to job choice, employee retention, and

overall compensation. Moreover, tastes for non-wage rewards vary systematically with gen-

der, age, and education. In a frictional model of human capital accumulation and occupation

decisions, Taber and Vejlin (2020) find that about 1
3 of observed choices would be different if

workers cared only about pecuniary aspects. Lehmann (2022) shows that a positive correla-

tion between wages and other amenities exacerbates inequality in the Austrian labor market

between 1996 and 2011. Lamadon et al. (2022) estimate that workers would pay a nontrivial

share of their wages to remain with their current employer.

In this study we adopt a revealed preference approach to estimate the components that

add up to the value of a worker-occupation match, and we document how these components

have shaped labor market outcomes since the 1980s.

We carry out the analysis in an equilibrium setting with discrete occupation choices and

technological change. The model allows for imperfect substitution in production between

worker-occupation matches, and distinguishes between observable and latent components of

match values. The latent part consists of an idiosyncratic (worker-specific) element and

a common (group-specific) component. The common component is defined within narrow

demographic groups.

The observable match components reflect the value of earnings and hours worked;1 the

latent ones reflect non-pecuniary attributes of a match as well as heterogeneity in compen-

sation. It is worth noting that, due to imperfect information, employers cannot make wage

offers contingent on idiosyncratic job valuations. Therefore, the match value components are

bundled within a job and cannot be freely traded against each other. One consequence of this

non-separability is that workers can earn rents from ongoing employment.

1Occupations vary in their time demands (Erosa et al., 2022a). Heterogeneous preferences contribute to
occupation choice, e.g., if wages are a convex function of time (Aaronson and French, 2004; Erosa et al., 2022b).
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In equilibrium, rent values depend on the attributes of marginal workers (individuals who

are indifferent between their match and an alternative). Marginal workers determine the

compensating differential in each worker-occupation pair and pinpoint the wage of all workers

in the same match, including the inframarginal ones. To elaborate on this point, we show

that compensating differentials and rents can be mapped into measures of welfare dispersion

within and between groups. Then, we use these measures to characterize the welfare outcomes

of different demographic groups.

The empirical analysis imposes few restrictions, apart from the low-level requirements of

a Roy model, and flexibly accommodates diverse sources of heterogeneity (e.g., Wiswall and

Zafar, 2018 show that women value work schedules and job stability more than men). Esti-

mation relies on data from all worker-occupation pairs, including those observed infrequently;

as a consequence, we draw inference from the relative scarcity of matches as well as from

pecuniary returns and hours worked. This is helpful to quantify the returns from rarely ob-

served worker-occupation matches where wages are uninformative in isolation. An advantage

of this approach is that we can estimate the model using repeated cross-sections (Census,

ACS) of earnings, hours worked and employment headcounts, focusing on combinations of

gender, education, age, and occupation.

Our findings can be summarized in two steps. First, we document that match values are

not well approximated by wages and hours alone: similar jobs have vastly different returns

for different workers (Autor et al., 2014; Cortes et al., 2017); moreover, latent components

are more dispersed than observable ones. Second, money-metric welfare measures suggest

that a significant share of average earnings (up to 1/3) reflects rents at the match level. The

distribution of yearly rent values has changed significantly between 1980 and 2018: the rents

of college graduates have increased by almost 25% and gains were especially large for college

educated women. On the other hand, lower education workers have experienced declining

rents (men) or stagnating rents (women).

Analytical forms for rents and compensating differentials highlight that not all wage dis-

persion translates into welfare dispersion, and that welfare changes depend critically on the

responsiveness of labor supply to the wage and non-wage components of match values. In

particular, the labor supply elasticities determine the characteristics of the marginal workers.

In this respect, our estimates indicate significant discrepancies between the elasticities of labor

supply to different match value components. Specifically, we find that latent returns exert a

strong influence on participation and aggregate employment, and that labor supply responds

more elastically to latent match values than to wages (see Appendix D).

This asymmetric responsiveness plays a key role in the dynamics of rents and welfare.

The mechanism is simple and we illustrate it by contrasting the reaction of rents to an

exogenous change in either wages or the latent components of match values. A positive wage

(productivity) change at the occupation-worker level induces higher labor demand, which
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boosts compensating differentials. However, following this initial impulse, the relatively mild

labor supply response results in little or no change in the composition of workers who populate

the match. Put differently, the marginal worker has similar characteristics before and after

the shock. In turn, this means that all workers end up benefitting from higher wages so that

rents increase for most of them. By contrast, when we consider an increase in the latent match

value at the occupation-worker level, the higher average surplus is offset by changes in the

marginal worker characteristics: specifically, the increase in the common latent component

attracts marginal types with lower idiosyncratic match values. This inflow offsets the initial

increase in the common match component so that compensating differentials do not change

and the marginal rate of substitution between wage and non-wage returns is close to what it

was before the shock. On the whole, following a change in the common latent value, the more

vigorous response of marginal workers implies that incumbent workers enjoy higher rents (due

to the increase in the common latent value) while newcomers have lower idiosyncratic match

values and, therefore, lower rents. The combination of higher rents for incumbents and lower

rents for new entrants results in little change for average rents but larger welfare dispersion

among workers within the same match.

Taken together, these findings deliver three messages: (1) the phenomenon of job po-

larization is not exclusively about technological change, as latent values play a non-trivial

role in accounting for employment and welfare changes; (2) rent-based measures of inequality

deliver useful insights into the mechanism that maps compensating differentials into welfare

inequality; (3) the characteristics of marginal workers determine welfare changes for all other

workers in the same match.

We have organized the paper as follows. After presenting the model (Section 2), in Sec-

tion 3 we outline the analysis of rents and compensating differentials, and we describe the

theoretical link with welfare. In particular, we show that rent differences between and within

matches depend on the characteristics of the marginal workers within each match. This anal-

ysis emphasizes that similar patterns of wage inequality are associated with varying degrees

of welfare dispersion. We estimate the model in Section 4, and then we use our estimates to

break down the contributions of technology and latent values to the evolution of wages and

employment in the US labor market between 1980 and 2018 (Section 5), and to characterize

changes in rents and compensating differentials over the same period (Section 6).

2 Model

We study a competitive labor market with two-sided heterogeneity (workers and jobs). Work-

ers’ sorting reflects the distribution of relative returns. The wage component of returns is

determined in equilibrium.
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Markets. Time is discrete and a period (year) is indexed by t. There is a finite number

M > 1 of separate labor markets, indexed by m. Each (m, t) pair is an independent market

with its own supply of, and demand for, workers.

Workers. A continuum of workers of size Smt populates each (m, t) market. Each worker

in market (m, t) is indexed by ι ∈ Smt and belongs to one of I demographic groups, indexed

by i ∈ I. We let µimt denote the mass of workers in group i, so that
∑

i µimt = Smt. Workers

choose whether to work and their occupation j = 1, ..., J . If they do not work, they are in

the idle state j = 0.

The utility that a worker derives from each possible state j = 0, ..., J consists of two ele-

ments: (i) a systematic utility (Uijmt) that depends on their type i, occupation j, and current

labor market (m, t); (ii) an idiosyncratic component which reflects individual preferences for

an occupation (θιj).

Workers of type i supply hijmt hours of work. The hourly wage is w̃ijmt. Workers con-

sume their income in each period. Income is the sum of labor income and non-labor income

ỹimt. Letting Pmt be the price of the consumption good in each separate market (m, t), we

define as wijmt = w̃ijmt/Pmt and yijmt = ỹijmt/Pmt the real wage and real non-labor income,

respectively.

The worker’s problem. We characterize the problem of a worker of type i in two

steps. First, conditional on being matched to occupation j, the systematic utility component

is maximized by solving

Uijmt(wijmt, yimt) = max
hijmt

uc (cijmt)− uih (hijmt) + bijt

s.t. cijmt = wijmthijmt + yimt,

(1)

where uc (·) is consumption utility and uih (·) is the disutility from work that can vary across

types; bijt denotes latent benefits accruing to a type i worker in occupation j and period t. The

systematic component of utility can differ across markets since wages and non-labor income

depend on the specific (m, t) pair. The latent component of utility varies with occupation,

demographic group, and time.2

We normalize the latent value of not working to zero so that the systematic utility of

non-employment (j = 0) is Ui0t (0, yimt) = uc (yimt) − uh (0). The normalization bi0t = 0

for all t and all i implies no loss of generality and is necessary because bi0t is not separately

2Latent components do not vary across markets since we assume that local amenities are enjoyed by workers
in all occupations and, therefore, they cancel out in the definition of surplus. We empirically assess the
robustness of this restriction by re-estimating the model under the alternative assumption that latent returns
can change across labor markets (Appendix N).
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identified from all other bijt. Given the normalization of bi0t and additive separability of the

match value, all the bijt terms include the value of home production. Since differences between

employment and non-employment reflect the value of home production, estimated variation

in bijt conveys also information about changes in productivity at home.

Workers in occupation j receive an additional return from the individual unobserved com-

ponent θιj , which captures idiosyncratic values of occupations. We assume that θιj is randomly

distributed as Type I Extreme Value with a zero location parameter and scale parameter equal

to σθ. The distribution of idiosyncratic values is independent of time and market.

The second step in the problem of the worker is the occupation choice. Given a set of

idiosyncratic preference shocks {θιj}Jj=1, the worker ι solves

max
j=0,1,..,J

Uijmt(wijmt, yimt) + θιj (2)

By the properties of the Extreme Value distribution, the fraction of workers of type i supplying

labor to occupation j in market m is

µijmt

µimt
=

exp (Uijmt(wijmt,yimt)/σθ)∑J
j′=0 exp (Uij′mt(wij′mt,yimt)/σθ)

(3)

Firms. Within each market and period, a representative final good producer uses a con-

tinuum of size one of intermediate goods to produce its output. Each intermediate is produced

by a different firm, indexed by v. Intermediate good producers employ one occupation j and

intermediate goods can be thought of as the output of an individual occupation. Since each

intermediate firm produces a differentiated good, they have market power in the intermediate

good’s market, and non-zero profits are made. Labor markets are competitive. For conve-

nience we partition intermediate firms into subsets {Vjt}j=1,...,J such that, for any pair of

firms v, v′ ∈ Vjt, their production technologies differ up to an idiosyncratic productivity shock

(TFP). The Vjt partition splits the continuum of intermediate producers into a finite number

of subsets containing producers that employ the same input j. In Appendix C we generalize

the model to a setting where intermediate producers employ capital and labor.3

Final good production. The final good producer solves:

max
{λjmtv}

PmtYmt −
∫
v
pjmtvλjmtvdv

s.t. Ymt =

(∫
v
λρjmtvdv

) 1
ρ

,

(4)

3In the appendix we show that the key empirical relationships are unchanged. Estimates of substitutability
between worker-occupation labor inputs based on the baseline model without capital are a lower bound.
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where λjmtv denotes quantity of each intermediate good’s demand. The final good price Pmt

in market (m, t) is a function of intermediate prices pjmtv,

Pmt =

(∫
v
p

−ρ
1−ρ

jmtvdv

)−(1−ρ)
ρ

Optimality for the production problem implies

pjmtv =

[
λjmtv

Ymt

]−(1−ρ)

Pmt

Producers of intermediate goods. The profit maximization of an intermediate pro-

ducer v ∈ Vjt is:

max
pjmtv ,λjmtv ,Lijmtv

pjmtvλjmtv −
∑
i

w̃ijmtLijmtv

s.t. λjmtv = zjmtv

∑
i

βijLijmtv

pjmtv =

[
λjmtv

Ymt

]−(1−ρ)

Pmt,

(5)

where zjtv is an idiosyncratic shock drawn from an occupation-specific distribution (zjtv ∼
Fjt(v)). Optimality implies the following expression for profits,

πjmtv =
1− ρ

ρ

∑
i

w̃ijmtLijmtv

The aggregate production function (see Appendix B for the full derivation) is then:

Ymt = At

∑
j

αjt

(∑
i

βijtLijmt

)ρ
 1

ρ

(6)

where αjt =
α̃jt∑
j′ α̃j′t

and At =
(∑

j′ α̃j′t

) 1
ρ
with α̃jt =

(∫
v∈Vjt

z
ρ

1−ρ

jmtvdv

)1−ρ

. In the appendix

we show that the wage function for match (i, j) in market (m, t) is

wijmt = ρAρ
tαjtβijt

(
Ymt∑

i′ βi′jtLi′jmt

)(1−ρ)

. (7)

Equilibrium. A competitive equilibrium in period t is a set of prices (w̃ijmt, pijmtv, Pmt),

occupational choices µijmt, labor supply choices hijmt, and labor demands Lijmtv such that:

1. given wages and preferences, each worker solves the problems described in equations (1)
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Average Rents (year 2000 $)

Year All College Men College Women Non-College Men Non-College Women

1980 14,515 22,663 14,170 15,832 9,014
1990 14,762 24,336 16,024 14,855 9,677
2000 16,052 27,377 18,199 14,878 10,501
2010 14,980 26,454 17,974 12,703 9,392
2018 15,985 27,451 18,861 12,903 9,460

Table 1: Estimated average rents by year and gender-education group.

and (2);

2. the final good producer and the intermediate firms behave optimally and solve (4) and

(5), respectively;

3. all markets clear. Labor market clearing implies that for all matches (i, j) and markets

(m, t), it is the case that Lijmt = µijmthijmt where Lijmt =
∑

v∈Vjt
Lijmtv.

3 Rents, Compensating Differentials, and Welfare

Job matches comprise bundles of observable and latent components, which cannot be sep-

arately rented out. As a result, the value of the current match of many workers is strictly

higher than their outside option (higher than the second best match they have access to).

We refer to these workers as inframarginal and define their employment rent as the pecuniary

value that makes them indifferent between the current job and the outside option.

3.1 Measuring rents

Consider a worker ι in demographic group i. Let j be their current occupation and j′ the

second best option. We define R̃ι
ijj′mt as the change in worker ι’s wage that makes them

indifferent between current match and outside option. The wage gap R̃ι
ijj′mt is such that:

Ũi(wijmt − R̃ι
ijj′mt, yimt) + bijt + θιj = Ũi(wij′mt, yimt) + bij′t + θιj′ (8)

where Ũi(w, y) = uc(whi(w, y) + y) − uih(hi(w, y)). The total employment rent of worker ι,

accounting for labour supply, is

Rι
ijj′mt = wijmt × hijmt − (wijmt − R̃ι

ijj′mt)× hi(wijmt − R̃ι
ijj′mt, yimt),

which is the difference between the earnings in the current match and the earnings when the

wage is changed to the point of indifference between j and j′. The rent that the worker extracts
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from match (i, j) are increasing in the wage differential between current job and second best

job, as well as in the difference between latent returns (both systematic and idiosyncratic).

The definition illustrates how rents can be broken down in different elements. As an

example, suppose that the wage differential between different matches grows. Wage inequality

alone would suggest an increase in welfare inequality. Yet welfare inequality does not change if

the larger wage gap is accompanied by a reduction in the differential between latent values (i.e.

wage differentials are compensating for changes in latent values). In this case, wage changes in

isolation would be a misleading measure of inequality while rents would correctly approximate

welfare changes. This example shows that the dynamics of welfare inequality depend on the

measurement of the interaction between wages and latent values (systematic and idiosyncratic)

in equilibrium. In this section we show that this interaction can be characterized by changes

in the characteristics of marginal workers over time. We use the notion of compensating

differential to establish a theoretical link between equilibrium rents and the characteristics of

marginal workers.

3.2 Compensating differentials

In what follows we denote the marginal worker within a match as ῑ. The compensating

differential between the current occupation j and an outside option j′ is the difference between

the utility that worker ῑ gets in the j′ (if paid at the same rate as in the current match) and the

utility that the worker gets from the current match. We define the compensating differential

between j and j′ as

CDῑ
ijj′mt = Ũi(wijmt, yimt) + bij′t + θῑj′ − Ũi(wijmt, yimt)− bijt − θῑj (9)

Conveniently, the compensating differential for worker ῑ, denoted as CDῑ
ijj′mt, can be es-

timated from a function of average earnings and hours worked in the (i, j) and the (i, j′)

matches (see derivation in Appendix J), and we can write

CDῑ
ijj′mt = Ũi(wijmt, yimt)− Ũi(wij′mt, yimt) = CDijj′mt. (10)

Since the quantity CDijj′mt can be recovered from average match values, it is straightforward

to define the compensating dollar value for any pair of occupations j and j′ as the change in

average labor income in the current match that makes CDijj′mt = 0, that is

uc(wijmthijmt + yimt − CD$
ijj′mt)− uh(hijmt) = uc(wij′mthij′mt + yimt)− uh(hij′mt). (11)
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3.3 The role of marginal workers

The characteristics of marginal workers are key to understand the evolution of rents, as these

workers set the wage for the inframarginal ones in the same match. To illustrate this point,

we use the definitions of compensating differentials in (9) and (10) to obtain,

CDijj′mt = Ũi(wijmt, yimt)− Ũi(wij′mt, yimt) = bij′t − bijt + θῑj′ − θῑj . (12)

It is apparent that the (money metric) compensating differential reflects the difference between

the latent value of (i, j) and the outside option (i, j′). This difference consists of two elements:

(i) a systematic common component that affects all agents within a match equally (bij′t−bijt);
(ii), an idiosyncratic component that is specific to the marginal worker in the match (i, j).

The common component (i) does not depend on the composition of workers in match (i, j)

but the idiosyncratic component (ii) does. To be precise, the idiosyncratic component of the

marginal workers matters for the compensating differential. In turn, this means that, if the

marginal worker characteristics change significantly, so does the compensating differential.

Below we describe two thought experiments that help clarify this mechanism. The first

considers the adjustments that follow an exogenous change in the common latent value bijt.

The second examines what happens after an increase in the productivity of workers in match

(i, j).

An exogenous change in bijt. Suppose that the latent value bijt increases. Ceteris

paribus, this boosts rents for all workers in match (i, j). However, the total equilibrium effect

on rents depends on how the characteristics of the marginal worker change in response to

the shock, which in turn depends on the elasticity of labor supply. If the elasticity of labor

supply to changes in bijt is high, the increase in bijt causes an inflow of workers with lower

idiosyncratic latent values (lower θ). In the new equilibrium the marginal worker’s θῑj is lower

and, using equation (12), the increase in bijt is offset by a fall in θῑj so that the compensating

differentials, and wages, in match (i, j) remains approximately stable. It follows that average

rents in the (i, j)-cell are little changed. Interestingly the variance of rents within the (i, j)

cell must grow as incumbents and new entrants become more different in their idiosyncratic

values (θ).

On the other hand, if the elasticity of labor supply to changes in bijt is low, the charac-

teristics of the marginal worker do not change much; in this case, equation (12) shows that

compensating differentials, and wages wijmt, must fall. This implies that average rents and

the whole distribution of rents in the (i, j)-cell are little changed: this follows from the obser-

vation that, while every worker enjoys a higher bijt, they all get lower wages. This example

highlights that using only wage changes to measure welfare responses can be misleading.

To sum up, the effects of exogenous changes in bijt on rents depend on the magnitude
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of the elasticity of labor supply. A high elasticity results in little or no change in within

group averages but leads to large effects on within group dispersion. A low elasticity implies

little changes in the within group distribution of rents but in significant changes in average

compensating differentials and earnings.

An increase in match-specific productivity. Next, we consider the case of an in-

crease in the productivity of workers in match (i, j). Upon impulse, demand for workers

increases; if the elasticity of labor supply to wages is low, wages have to grow substantially to

attract extra workers. Equation (12) requires that wages grow up to the level where they ac-

commodate the lower idiosyncratic θῑj of the new marginal worker. Higher wages and constant

latent component bi,j imply that the marginal rate of substitution between money and latent

returns must also grow. Put differently, the incumbent workers (those already in match (i, j)

before the productivity change) benefit from higher wages without suffering any loss in their

latent match values. Moreover, due to the low elasticity of labor supply, the inflow of new

workers with low θ is modest implying that the average θ in the (i, j) match is only slightly

lower. The productivity impulse results in higher rents for most workers with little change

in the dispersion of rents within the group. In other words, technological change has strong

effects on between-group (between-match) rent inequality but small effects on within-group

(within-match) inequality.

By the same token, if the elasticity of labor supply is high, more workers will switch to

occupation j. Wages will still increase but to a lesser extent since the new marginal worker is

characterized by a lower θῑj . On average, the wage increase will be offset by lower average θ

so that average rents are not much changed. At the same time, within group rent inequality

increases since the incumbent workers enjoy higher wages without any loss of latent values.

To sum up, exogenous changes in productivity have a different impact on rents depending

on the magnitude of the elasticity of labor supply to wages. A low elasticity induces strong

responses in between group (between match) rent inequality, but small effects on within-group

dispersion. In contrast, a high elasticity implies smaller effects on between-group inequality

but stronger changes in within-group rent inequality.

4 Identification and Estimation

To estimate the empirical counterpart of the model we need data on the cross-sectional dis-

tribution of employment and earnings for different worker types. Below we overview the

identification of utility and production parameters, and describe data sources and estimation.

More details are in Appendix A.
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4.1 Data

We use decennial Census data from 1980, 1990, and 2000; in addition, we pool together three

years of the American Community Survey (King et al., 2010) to get samples of comparable

size for 2010 (2009-2011) and 2018 (2017-2019). We consider individuals aged between 25

and 54 and exclude those in education as well as workers in farming, forestry, and fishing.

We define worker-side heterogeneity as a combination of gender, age (three groups: 25-34,

35-44, 45-54), and education (college graduates and above; less than college). This results

in 12 distinct worker groups, indexed by i ∈ I. On the demand side, we consider a set of

13 occupations, in addition to the non-employment state. The occupation states are indexed

by j ∈ J and reported in Table 2 along with their aggregation into four broad task clusters

(see Acemoglu and Autor, 2011; Cortes and Gallipoli, 2018). We consider four geographical

markets, indexed by m ∈ M , corresponding to U.S. Census regions (Northwest, Midwest,

South, and West).

For each cell, consisting of a match (i, j) and a market (m, t), we compute total employ-

ment, average hours worked, average wages, and average non-labor income. To account for

differences in the cost of living across regions we adjust the income measures by a local CPI

based on the cost of housing (Moretti, 2013). To measure total employment we use population

weights and count a worker as employed if they report working at least 15 hours per week.

Non-labor income consists of the sum of incomes from businesses and farms.

4.2 Identification

Model parameters are identified by variation in employment shares across occupations and

by differences in labor supply and wages across workers.

Preferences. The employment equation (3) links the employment in each occupation to

the observed wages in those jobs. The occupation value is scaled by the parameter σθ, which

reflects the dispersion of idiosyncratic preferences. The relationship in (3) is instrumental to

quantify the value of each (i, j) match relative to a different employment state. We define the

surplus relative to non-employment as,

log

(
µijmt

µi0mt

)
=
Uijt(wijmt, yimt)− Ui0t(0, yimt)

σθ
. (13)

Assuming isoelastic utility for consumption and leisure, we use the functional forms:

uc (c) =
c1−σ − 1

1− σ
uih (h) = ψi

h1−γ

1− γ
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Table 2: Occupation categories used for estimation.

Managerial, Professional Specialty and Technical
(Non-Routine Cognitive)

1 Executive, Administrative, and Managerial
2 Management Related
3 Professional Specialty
4 Technicians and Related Support

Sales and Administrative Support
(Routine Cognitive)

5 Sales
6 Administrative Support

Service
(Non-Routine Manual)

7 Protective Service
8 Other Service

Precision Production, Craft, Repair,
Operators, Fabricators, and Laborers

(Routine Manual)

9 Mechanics and Repairers
10 Construction Trades
11 Precision Production
12 Machine Operators, Assemblers, and Inspectors
13 Transportation and Material Moving
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Under these parametric restrictions, equation (13) shows that we can use cross-sectional vari-

ation in employment, hours worked and wages to estimate: (i) the latent return bijt for

occupation-worker pair (i, j) in period t, and (ii) the scaling parameter σθ, which dictates the

dispersion of idiosyncratic preferences. Optimality of labor supply in the worker’s problem

(1) implies

(wijmthijmt + yimt)
−σ wijmt = ψih

−γ
ijmt (14)

If γ ≤ 0, the disutility from work is a convex function and (14) has a unique solution. We do

not restrict γ but find that its estimated value satisfies the condition for uniqueness.

Technology. The wage expression in (7) and labor market equilibrium imply

wijmt

wij′mt
=

αjtβijt
αj′tβij′t

(
L̃j′mt

L̃jmt

)1−ρ

where L̃jmt =
∑

i′ βi′jtLi′jmt. The β parameters are identified, up to a normalization, by

within-occupation ratios of wages between worker groups (proof in Appendix A). Normalizing

β1jt = 1, for all j = 1, ..., J and all t, we estimate the remaining β shares by averaging the

within-occupation wages in the M markets and obtain β̂ijt =
1
M

∑M
m=1

wijmt

w1jmt
. We estimate

the other parameters using wage ratios (see Appendix A) such as,

log

(
wijmt

wi1mt

)
= log

(
αjt

α1t

)
+ log

(
βijt
βi1t

)
+ (ρ− 1) log

(∑
i′ βi′jtLi′jmt∑
i′ βi′1tLi′1mt

)
(15)

The second regressor on the right-hand side of equation (15) is B̂ijt = log
(
β̂ijt

β̂i1t

)
; this term

should have a coefficient equal to one, a restriction that we can test.

The third regressor on the right-hand side of (15) is Λ̂jmt = log

(∑
i′ β̂i′jtµi′jmthi′jmt∑
i′ β̂i′1tµi′1mthi′1mt

)
,

which measures the supply of labor efficiency units to occupation j. Therefore, the empirical

counterpart of the relationship in (15) is,

Wijmt = γjt + ψB̂ijt + ϕΛ̂jmt + ϵijmt (16)

where Wijmt = log
(
wijmt

wi1mt

)
and ϕ = ρ− 1.

4.3 Estimation of preference parameters

We estimate the model in two steps. First, we recover parameters dictating utility and labor

supply choices. Next, conditional on estimates from the first step, we estimate production

technology parameters (input shares, elasticity of substitution between inputs).
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Curvature parameters and disutility of labor. We use the optimality condition in

(14) to express hours worked as a function of wages and non-labor income:

log (hijmt) = f
(
Xijmt, Ω̃i

)
+ ϵ1ijmt

whereXijmt = [wijmt; yimt], Ω̃i = [σ; γ; ψi], and f
(
Xijmt, Ω̃i

)
= log(ĥijmt) is the logarithm

of hours worked as predicted by the model that is numerically solved. This delivers two sets

of moments for the GMM estimation of labor supply parameters. Namely,

E
[
log (hijmt)− f

(
Xijmt, Ω̃i

)
|i
]
= 0 (17)

E
[(

log (hijmt)− f
(
Xijmt, Ω̃i

))
Z1

ijmt

]
= 0 (18)

To account for potential endogeneity, the second set of moments posits orthogonality with

respect to a vector of instruments Z1
ijmt.

Extensive margin of labor supply. The definition of surplus in (13) implies that the

occupation choice is a function g (Xijmt;Ωi) such as

g (Xijmt;Ωi) =
Uijt(wijmt, yimt)− Ui0t(yimt)

σθ

=
uc

(
wijmtĥijmt + yimt

)
− uih

(
ĥijmt

)
+ bijt − uc (yimt)

σθ

where Ωijt = Ω̃i
⋃
[σθ; bijt]. Then, given that Υijmt = log

(
µijmt

µi0mt

)
and using the estimates

ĥijmt = exp
(
f
(
Xijmt, Ω̃i

))
, we recover the parameters dictating the extensive margin of

labor supply from the empirical relationship:

Υijmt = g (Xijmt;Ωijt) + ϵ2ijmt.

In practice, we use the following moment conditions:

E [Υijmt − g (Xijmt,Ωijt) |i, j, t] = 0 (19)

E
[
(Υijmt − g (Xijmt,Ωijt))Z

2
ijmt

]
= 0 (20)

where Z2
ijmt is a vector of instruments.

Simulated method of moments. We denote as X the data vector of wages and

hours worked. To calculate the cell averages we consider people reporting at least 15 hours

of work per week and positive earnings. Given the parameter matrix Ω = {Ωijt}, where

14



Ωijt = [σ; γ; ψi]
⋃
[σθ; bijt], we solve the estimation problem:

Ω̂ = argmin
Ω

M (X,Z;Ω)T WM (X,Z;Ω) (21)

where W is a positive definite weighting matrix4, Z is the vector of instruments, M is the

set of target moments described in (17), (18), (19) and (20).

The problem in (21) is computationally demanding as it requires solving the labor supply

first order conditions in (14) for all the (i, j) and (m, t) pairs. Therefore, we reformulate the

problem by specifying the first order conditions as constraints (Su and Judd, 2012). We let

Ω+ be the union of the parameter matrix Ω and {ĥijmt}∀i,j,m,t, where the latter is the set of

model-generated labor supplies. The estimation problem becomes:

Ω̂ =argmin
Ω+

M
(
X,Z;Ω+

)T
WM

(
X,Z;Ω+

)
(22)

s.t. − σ log(wijmtĥijmt + yimt) + log(wijmt) = log(ψi)− γ log(ĥijmt) ∀i, j,m, t

where the constraints represent the FONC with respect to the intensive margin of labor

supply. The constraints ensure that labor supply satisfies the first order conditions (i.e. that

the numerical approximation of the “hours worked” function f
(
Xijmt, Ω̃i

)
holds). This

approach does not require solving for the optimal hours in each iteration of the optimization

algorithm and substantially reduces computation time.

We report estimates of the parameter matrix Ω in Appendix O. We use 10 and 20-year

lagged wages as instruments for current wages. Table 7 shows estimates of the curvature

of the consumption utility and of the scaling factor of the extreme value preference shocks

(respectively, σ and σθ). Table 8 shows estimates of both weight and curvature of dis-utility

from labor (ψ, γ). Tables 9-13 report all estimates of latent match-specific values (bijt) for

different years.

4.4 Estimation of technology parameters

We estimate the worker-occupation shares βijt using within-occupation wage ratios. With

those in hand, we recover the αjt and ρ using a first-difference specification of the wage

conditions in (16). This specification flexibly allows for the use of instrumental variables to

account for endogeneity of input demands.

To illustrate the estimation steps, we begin by noting that ρ̂ = ϕ̂ + 1, and ϕ̂ can be

recovered estimating (16) in first differences. Next, we recover the γjt = log
(
αjt

α1t

)
in (16)

by projecting the residuals W̃ijmt = Wijmt − B̂ijt − ϕ̂Λ̂jmt on occupation-year fixed effects.

Finally, we obtain the value of each occupation weight αjt in the production technology (6)

4To reduce small sample biases (Altonji and Segal, 1996) the weights matrix W is an identity matrix.

15



from the restriction
∑

j αjt = 1 for all t. The full set of estimated αjt and βijt shares, alongside

plots of the combined αjt × βijt weights, are in Appendix F.

Endogenous production inputs. We use two different approaches to account for po-

tential endogeneity of labor inputs. Each strategy instruments the changes in labor input

log-ratios ∆Λ̂jmt in (16) with predicted log-ratios of headcounts.

The model suggests that, within each demographic group, differences in the labor par-

ticipation (headcount) in each occupation over time are the by-product of differences in the

relative valuation of occupations by different workers. Changes in relative valuations and,

as a consequence, in labor supply can be caused by changes in the pecuniary component of

returns (i.e. wages) or changes to latent returns.

The first identification strategy leverages changes in the relative attractiveness of one

occupation due to changes in the pecuniary returns in other occupations. Given estimates of

labor supply parameters, we compute cross elasticities of labor supply shares (see Appendix

D) and can define the elasticity εcrossijj′mt =
dsijmt

dwij′mt

wij′mt

sijmt
=

dµijmt

dwij′mt

wij′mt

µijmt
, which measures the

change in employment shares in occupation j in response to changes in the wage rate of

another occupation j′. Using the cross-elasticities, we can obtain predicted changes in labor

supply to occupation j due to changes in the wages paid to other occupations. Specifically,

we denote the employment shares observed in the preceding decade (t − 10) as sijmt−10 and

compute the predicted shares of workers of demographic group i choosing occupation j as

ŝijmt = sijmt−10

∑
j′ ̸=j

e
εcross
ijj′mt−10[log(wij′mt)−log(wij′mt−10)] (23)

The predicted labor supply to occupation j is L̂h
jmt =

∑
i ŝijmtµimt, where h denotes the

headcount. We use the latter measure to construct the predicted relative labor supply Λ̂h
jmt =

log

(
L̂h
jmt

L̂h
1mt

)
in period t. The instrument can then be written as,

IV1jmt = ∆Λ̂h
jmt = Λ̂h

jmt − log

(
Lh
jmt−10

Lh
1mt−10

)
, (24)

where Lh
jmt−10 is the actual number of workers in occupation j in market m at time t− 10.

The second identification strategy relies more directly on theoretical restrictions as, by

definition, shifts in latent returns affect occupation-specific employment given observed wages.

One can therefore develop a set of instruments from changes in occupation shares due to

variation in latent returns bijt. Equation (13) implies:

ϱijmt = log

(
µijmt

µi0mt

)
=
bijt +Πijmt

σθ
=⇒ ∆ϱijmt =

∆bijt +∆Πijmt

σθ
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where Πijmt = Uijmt − Ui0mt is the observed pecuniary component of the returns. If we set

∆Πijmt = 0 in the equation above, we obtain a counterfactual ϱ̂ijmt that only varies with the

latent component of returns:

ϱ̂ijmt = ∆ϱ̂ijmt + ϱijmt−10 =
bijt − bijt−10

σθ
+ ϱijmt−10.

We estimate a set of counterfactual shares as ŝijmt =
exp(ϱ̂ijmt)

1+
∑

j′=1,...,J exp(ϱ̂ij′mt)
, which can be used

to predict labor inputs as L̂h
jmt =

∑
i ŝijmtµimt. We employ these fitted values to construct a

set of instruments (IV2jmt), as described in equation (24). In appendix E, we examine robust-

ness by adopting an alternative identification strategy that leverages aggregate demographic

changes as exogenous shifters of labor supply. This results in a Bartik (1991) instrument that

does not depend on first step estimation and delivers qualitatively and quantitatively similar

results (see Table 6).

Substitution among worker-occupation inputs. Table 3 shows values of the co-

efficients on ∆Λ̂jmt and ∆B̂ijt from the first-differenced estimation of (16). Endogeneity

introduces a positive bias in the estimates of ϕ. Columns 2 and 3 show estimates after in-

strumenting ∆Λ̂ijmt with either of the two instrument sets. Estimates of ρ suggest that the

elasticity of substitution between worker-occupation inputs (that is, 1
1−ρ) is larger than one

and between 1.7 and 1.9.

We consider the values in column 4 as our baseline estimate, implying an elasticity of

substitution of 1.87. When using multiple instruments together, one can compute a p-value

for the over-identification test (Sargan, 1958) and we find that the validity of the instruments

cannot be rejected. Under all identification strategies, the estimated coefficient on ∆B̂ijt is

not significantly different from one, which is consistent with the theoretical restrictions of the

model.

Prices and quantities: comparing model and data. Figure 1 compares data on

average wages and employment in each worker-occupation cell (i, j) with their model coun-

terparts obtained by solving for the equilibrium in each market and year. Simulated prices

and quantities match data observations closely. The model accounts for, respectively, 99%,

95%, and 72% of total variation in employment, wages, and hours worked.5

5In appendix G, we consider a version of the model that allows for the disutility of work to change with de-
mographic characteristics and occupations to allow for more flexible preferences. The more flexible specification
can account for a bigger share of variation in hours worked without affecting other estimation results.
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OLS IV
(1) (2) (3) (4)

ϕ̂ -0.0834 -0.5681*** -0.5414*** -0.5344***
( 0.0610) ( 0.1212) ( 0.1348) ( 0.1256)

ψ̂ 0.9771*** 0.9771*** 0.9771*** 0.9771***
( 0.0413) ( 0.0414) ( 0.0414) ( 0.0414)

Observations 2,496 2,496 2,496 2,496

Instrument set IV1 IV2 IV1-IV2

Test ψ̂ = 1 (p-val) 0.5796 0.5812 0.5810 0.5812
OverId p-val 0.6204

Implied ρ 0.9166*** 0.4319*** 0.4586*** 0.4656***
( 0.0610) ( 0.1212) ( 0.1348) ( 0.1256)

Implied elast. of sub. 11.9974 1.7604*** 1.8472*** 1.8711***
( 58.5230) ( 0.3740) ( 0.4802) ( 0.4036)

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3: Estimation results for equation (16), estimated in first differences.
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Figure 1: Goodness of fit. Left: model implied wages vs. data. Center: model implied
employment vs. data. Right: model implied hours worked vs. data.

4.5 Match input shares in production

Wages vary with the productivity of each worker-job pair. In turn, the productivity responds

to shifts in labor supply and technology. We find evidence of divergence in the productivity of

worker-occupation inputs between 1980 and 2018. The marginal product of a type-i worker

in occupation j at time t is proportional to the production share αjtβijt. Figure 2 plots the

(employment-weighted) αjtβijt of four broad occupation categories (levels in left panel, growth

rates post-1980 in right panel). Productivity in routine manual jobs has steadily declined after

1980, as the αjtβijt are about 25% lower in 2018 than in 1980. The shares of other occupation

categories started diverging in the 1990s. Non-routine cognitive jobs experienced a cumulative

rise in production share close to 70% by 2018. In contrast, non-routine manual and routine

cognitive occupations had less vigorous growth, with cumulative changes of αjtβijt between

40% and 20% over the sample period. The fanning out of production shares underlies changes

in wages and employment. In Appendix F we present match-level estimates by intersecting

occupation category with worker type and we find similar patterns.

4.6 Latent heterogeneity

Next, we combine information on quantities (employment) and prices (wages) to distinguish

between observable and latent components of returns. Figure 3 shows the distribution of

match values and of their components, expressed in utility metric. We plot the distribution

of: (i) utility from observable wages; (ii) the dis-utility from hours worked; and (iii) the latent

match utility net of hours worked. As one migt expect, latent utility varies significantly

across worker-occupation matches. However, the dis-utility from time spent working is very
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Figure 2: Production shares of four major occupation categories (based on estimates of
αjtβijt). Left panel: levels. Right panel: growth relative to 1980 base year.

concentrated.6 In Section 6 we develop money-metric measures of rents and compensating

differentials, and we show that latent match values account for a non-trivial share of the total

labor market return.

5 Technological Progress with a Changing Workforce

To explore the interaction between wages and latent returns, we leverage the equilibrium

model developed in Section 2 and perform several counterfactual exercises. First, we ask how

employment and wages would have changed if the distribution of latent returns had stayed at

its 1980 levels. Second, we compute counterfactuals holding technology parameters at their

1980 levels.

Finally, to distinguish between partial and general equilibrium effects, we consider two

additional experiments. In one, we compute employment changes holding wages at their

1980 levels and illustrate how employment responds to latent match values when general

equilibrium price responses are muted. Next, we explore wage changes holding quantities at

their 1980 levels (constant employment shares) and illustrate the partial equilibrium effects

of technological progress when employment responses are muted.

The experiments highlight the ongoing race between technology and a changing work-

force. We show that the concurrent growth in the supply of educated workers and in their

productivity has generated an expanding surplus for a large set of worker-job matches. In

this respect, we make three observations:

1. Aggregate employment in each demographic group responds strongly to changes in latent

6This finding refers to the total hours worked in a year. Goldin (2014) shows that the way hours are
distributed in a week and schedule flexibility may be important. The value of such flexibility is captured in
the model by the latent returns.

20



-3 -2 -1 0 1 2
Utils

1980

-3 -2 -1 0 1 2
Utils

2000

-3 -2 -1 0 1 2
Utils

2018

Match Value - Total and Components

Total Wage Hours Latent bijt

Figure 3: The figure shows, for different years, the cross-sectional distributions (densities) of:
(1) total match values (total of all systematic, non random components); (2) observable wage
components of match values; (3) dis-utility from hours worked; (4) latent components bijt. The
unit of observation is the worker-occupation pair. Distributions are employment-weighted.
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match values. Technology has a smaller impact on overall employment.

2. However, the distribution of employment across occupations does depend on techno-

logical change. The flight from routine occupations towards non-routine ones is largely

driven by technological change. This is in line with the literature on job-polarization

and with the finding in point (3) below.

3. Wage gaps between demographic groups are tightly linked to technological change. La-

tent match values have smaller influence on match-specific wages.

Taken together, these observations suggest that technology is key to account for the distri-

bution of occupational choices through changes in wage returns. The differential sensitivities

of aggregate labor force participation and occupation choice to technology turn out to be

important when we examine rents and welfare. In Appendix D we report estimates of the

elasticities of labor supply to changes in wages (driven by technology) and to changes in la-

tent values. We find that the extensive margin labor supply elasticity to changes in wages is

on average between 0.5 and 0.6 while the elasticity to changes in latent values is on average

between 1.3 and 1.6. In what follows we briefly overview the counterfactual analysis.

5.1 Counterfactual exercises: employment changes

Figure 4 plots the cumulative employment changes (1980-2018) of four demographic types

defined by gender and education.7 The black bars show observed changes in employment.

Male work force. The decline in men’s participation is small for the college-educated

(one percentage point) and substantial for the less educated (-4 percentage points). The

participation of both groups responds strongly to latent components of returns. Holding

latent values at their 1980 level has the largest impact on employment outcomes. When we

hold technology parameters at their 1980 level, we see that technological change impacts men

differently by education. For college workers, technological change offsets the negative impact

of latent returns on labor force participation. For non-college men, however, technology

and latent values reinforce each other, contributing to lower employment. The lesson from

these exercises is that latent match values are the most influential force in the labor market

participation of men.

Female work force. The patterns are different among women: changes are positive and

more pronounced, with both high-education (+15) and low-education (+14) individuals ex-

periencing employment growth. Both the latent returns and technology8 have lifted female

labor force participation. However, latent returns explain most of the growth in employment.
7For the evolution of employment and wages, see Appendix O.
8Technology shares subsume shifts in wage discrimination (see Hsieh et al., 2019).
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Figure 4: Changes in employment rates by demographic group. Comparisons of baseline and
counterfactual scenarios between 1980 and 2018. Changes are in percentage points.

Partial equilibrium effects. The rightmost bar in each panel shows the partial equilibrium

impacts of latent values on employment. In this exercise, we hold wages at their 1980 level so

that the counterfactuals allow for changes in latent values but shut down wage responses. In

all four panels, the outcomes closely align with the bars corresponding to the fixed technology

scenario and suggest that price adjustments have little impact on employment. As we discuss

below, however, equilibrium responses are stronger when we consider the distribution of em-

ployment shares across occupation categories: this indicates that price responses do influence

the composition of jobs and occupation shares, conditional on aggregate employment.

Employment changes by occupation category. We replicate the counterfactual analysis

by occupation group. The objective is to gauge the importance of technology, as opposed

to latent match values, for different job matches. Details about these exercises are in the

Appendix Section I. We consider four broad occupation categories (by routine and cognitive

intensity). The results suggest that technological change has been the main force behind

changes in employment across job matches. The exception is non-routine manual occupations

where the largest contribution comes from latent returns: since this occupation category

experienced a large drop after 1980, only people with high match values have stayed in those

job matches.
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Figure 5: Changes in average hourly wage by demographic group. Actual versus counterfac-
tual scenarios between 1980 and 2018.

5.2 Counterfactual exercises: wages

We run similar exercise to examine the forces underpinning wage changes. Figure 5 shows

the actual and counterfactual wage changes for different worker types. After 1980, hourly

wages increased for college graduates (right panels). This was mostly driven by technological

change while the equilibrium effects originating from latent components were small (their

magnitude can be appreciated by looking at the small gaps between “fixed employment” and

“fixed latent” experiments). In contrast, wages for non-college men declined over the sample

period. Also in this case technological change was the main contributor but equilibrium

effects mitigated the wage drops. The bottom left panel shows that low-education women

experienced a small increase in wages, which has led to a reduction of the gender wage gap.

Technology was a key driver of these patterns.

Wage changes by occupation group. In Appendix Figure 11 we plot the actual and

counterfactual changes in hourly wages by occupation category. Significant changes occurred

in non-routine cognitive (NRC) and routine manual (RM) occupations. These changes mirror

those observed among college graduates and non-college men in Figure 5. The counterfactual

analysis (Appendix I) confirms that technological change is the leading force behind wage

divergence and occupation selection, whereas latent employment values have a strong influence

on the aggregate labor supply of different demographic groups.
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6 Rents and welfare

6.1 The distribution of employment rents

We compute the average rent within each (i, j,m, t) cell and denote the cell-specific averages

as Rijmt (derivations in Appendix J). Table 1 reports estimates of monetary rents by year,

gender and education (in year 2000 dollars). The average rent (first column) has grown over

the past four decades, rising by roughly 10% from about $14,500 in 1980 to almost $16,000 in

2018. However, not all rents have risen and the gap between education groups has widened.

While college rents have gone up, non-college rents have stagnated or fallen, like in the case of

non-college men. The latter observation indicates that male workers in non-college jobs have

experienced a shrinking labor market surplus (see also Aguiar et al., 2017). We probe the

mounting disparities in rents by plotting (Figure 6) the employment-weighted kernel density

of rents in different years (all in year 2000 dollar equivalents). The top panel shows the

cross-sectional distribution of rents. The bottom panels show rent densities conditional on

gender and education. It is apparent that the distribution of rents among educated workers

has shifted to the right, while that of non-college men shifted sharply to the left (Cortes

et al., 2018). Moreover, rents have become more dispersed within each demographic group.

The growing dispersion is partly explained by widening gaps among occupations (Table 29

of Appendix O): the main occupational divide is between growing rents in cognitive jobs and

shrinking rents in manual jobs.

6.2 What drives changes in rents?

Rents respond more strongly to shifts in technology than to changes in latent values. This

finding becomes intuitive when we examine the attributes of marginal workers and the type

of trade-offs they encounter.

Counterfactual rents. It helps to revisit the counterfactual exercises of Section 5, notably

the fixed technology and the fixed latent values experiments. Table 4 shows the growth rate

of rents between 1980 and 2018 in the baseline model and in the two counterfactual scenarios

with fixed technology and fixed latent values. The top panel confirms that rents have grown

for college graduates of all gender; at the same time they stagnated for non-college women and

fell for non-college men. The middle and bottom panels report two counterfactual outcomes:

first, we use the model to compute rents holding latent values at their 1980 levels; second, we

compute rents holding technology parameters at their 1980 values. For both experiments we

report the ratio of average rents in 2018 to average rents in 1980 (the counterfactual growth

ratio that we obtain after assuming no change in technology or latent values). We make two

observations:
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Figure 6: Distribution of job rents (employment-weighted): pooled (top panel) and disaggre-
gated (bottom four panels). All values are in year 2000 dollar-equivalents. Vertical lines show
averages in different years.
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Rents: 2018 vs 1980, aggregate and by worker group.

College Non-College
All Men Women Men Women

Baseline
1980 14,515 22,663 14,170 15,832 9,014
2018 15,985 27,451 18,861 12,903 9,460

Ratio: 2018/1980 1.10 1.21 1.33 0.82 1.05

Latent values at 1980 level
Counterfactual ratio 1.14 1.25 1.29 0.84 1.08

Technology at 1980 level
Counterfactual ratio 1.02 0.97 0.92 1.04 0.96

Table 4: Actual and counterfactual changes in rents between 1980 and 2018. Ratios: average
rents in 2018 divided by average rents in 1980. Dollar values ($) are in year 2000 dollars.

1. holding latent values fixed (while letting technology free to change) results in rents’

growth similar to what we have observed between 1980 and 2018;

2. holding technology fixed (while letting latent values free to change) delivers almost no

change in rents (the counterfactual growth ratio between current and past rents is close

to one).

These observations remain valid even when we split the sample by occupation (see Table 31

in Appendix O).

6.3 Marginal vs inframarginal workers

Why are rents so sensitive to technological shifts? To answer this question we focus on

marginal workers who are close to indifference between their current occupation j and the

second best alternative j′. By focusing on this group, we identify the marginal rate of substi-

tution between observable and latent components in each worker-occupation pair; that is, we

measure the compensating differential for that set of workers.9

Estimating compensating differentials. For each (i, j,m, t) cell, we calculate the

mean absolute compensating differential as:

CD
$
ijmt =

∑
j′=1,..,J ;j′ ̸=j

ωijj′mt|CD$
ijj′mt|

9Empirical studies often define compensating differentials as the covariance between wage and non-wage
components (see Lehmann, 2022). In Appendix K we revisit our findings using this alternative and heuristic
definition.

27



Average Compensating Differentials (year 2000 $)

Year All College Men College Women Non-College Men Non-College Women

1980 5,727 10,269 6,683 5,311 3,930
1990 6,750 11,050 7,236 6,368 5,131
2000 8,398 16,522 8,874 7,414 5,797
2010 7,963 13,509 9,356 6,908 6,447
2018 7,906 14,881 9,884 6,853 5,580

Table 5: Average absolute compensating differentials by year and demographic group.

where ωijj′mt is the fraction of workers in occupation j whose second best occupation is j′

(defined as ωijj′mt =
µij′mt∑

j′′=1,..,J;j′′ ̸=j′ µij′′mt
).

The first column of Table 5 shows the employment-weighted average of CD
$
ijmt by year.

The remaining columns show the evolution of compensating differentials by demographic

group. The estimates suggest that the mean absolute compensating differentials have in-

creased in all groups and growth is larger among the college educated. The marginal rate

of substitution between latent returns and wages was much higher in 2018 than 1980. The

higher marginal rate of substitution between latent returns and wages indicates that latent

components of job values are exchanged at higher prices than before. There can be different

reasons for this phenomenon and, in Section 7, we show evidence that higher CDs are strongly

associated to more frequent mobility across occupations, which is key to select preferable job

bundles. In Appendix O we show that average compensating differentials (mean absolute val-

ues) for workers who are indifferent between two jobs in the same broad occupation category

have grown in all occupation categories and are highest in non-routine ones (Table 30).

Relating rent and compensating differentials The rationale for the fact that the

evolution of rents is almost entirely explained by technological change is rooted in the analysis

developed in section 3. There we argued that technological changes are reflected in rents when

the elasticity of labor supply to wages, which we estimate to be on average between 0.5 and

0.6, is relatively low. Suppose productivity increases.As a consequence demand increases.

Since workers are hard to attract because of the low elasticity, wages have to increase a lot.

All existing workers enjoy higher wages while keeping the same latent values. Moreover since

only a handful of workers switch to the new occupation the within group composition is almost

unchanged. Average rents increase. The increase in the rents accruing to college graduate

is then explained by the increase in the productivity in occupations typically held by college

graduates that we documented in section4.

In section 5 we have seen that changes in latent values have driven the increase in labor

force participation of women. This increase in latent values is not accompanied by a corre-

sponding increase in rents exactly because of the strong response of labor supply to changes in
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latent values. In section 3 we have argued that when the elasticity of labor supply to changes

in latent values is high (between 1.3 and 1.6 in our estimates) an increase in latent values is

offset by a fall in the average idiosyncratic evaluation and a fall in the idiosyncratic evaluation

of the marginal workers which mutes wage responses. As a result rents do not change much.

This is particularly evident for non-college women whose participation in the labor force has

increase substantially over time while their rents have stagnated.

7 Extensions and Robustness

In what follows we consider extensions and assess robustness to alternative assumptions. The

first two extensions relate to modeling assumptions. First, we estimate a model where latent

returns can vary across labor markets. Second, we consider a model with endogenous capital

in intermediate production and use it to check the robustness of the empirical relationships

estimated in the baseline model. The remaining extensions relate to our estimates of latent

values, rents, and compensating differentials. First, we investigate whether latent values

reflect preferences for the local amenities in the area where jobs are located. We find that

jobs within cities and city centers are associated with higher latent values, especially for

women. Next, we examine whether wage risk matters for rents and show that larger rents

may partly compensate for higher wage risk. In the third extension, we provide evidence that

job mobility is correlated with compensating differentials. Finally, we compute alternative

measures of compensating differentials and verify how they relate to our own measure.

7.1 Variation in latent values across locations

The latent components of match value may vary systematically across locations. In Appendix

N we study a model that allows for heterogeneity in latent returns across markets. Identifi-

cation requires that we cast the component bijmt as the sum of a time-varying demographic-

and-occupation component (like in the baseline model) and a term that can change across

market-occupation pairs. The latter term reflects possible differences in the latent value

of an occupation due to location-specific features. In practice, this amounts to redefining

bijmt = bijt + bjm so that identification requires that all values be estimated relative to a

reference region-occupation bjm. Table 28 in Appendix N shows estimates of the bjm for

different census regions and occupations. Estimates of local effects are small relative to the

bijt components. A variance decomposition illustrates that the contribution of the local bjm

terms is less than one percent of the total variance of systematic latent returns bijmt.
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7.2 Capital inputs in intermediate production

In Appendix C we examine the robustness of results to the introduction of capital inputs in

production. Specifically, we generalize the intermediate production technology to account for

endogenous capital choices. The analysis shows that, just like in the baseline model, the distri-

bution of labor inputs in the cross-section of intermediate good producers can be expressed as

a function of match productivities (producer-level TFPs). Moreover, the relationship that we

use to estimate technology parameters (equation (16)) remains valid. Match-specific shares

and elasticities can be recovered using the baseline identification strategy. The one difference

is that a correction must be applied to account for capital shares in the estimation of the

elasticity of substitution between worker-occupation aggregates. This is necessary because,

in the baseline model, the ϕ parameter in equation (16) gives a point estimate of (ρbase − 1),

where ρbase denotes the baseline estimate of the substitution parameter ρ. In a model with

endogenous capital inputs, however, the parameter ϕ delivers an estimate of ρ−1
1−ρ(1−γ) and

1 − ρbase = 1−ρ
1−ρ(1−γ) , where γ is the capital share in intermediates’ production. Assuming a

positive value of γ means that the baseline estimate ρbase is a lower bound of the curvature

parameter ρ. This results in an upward rescaling of the elasticity of substitution and suggests

that estimates of price responses in the counterfactuals are an upper bound of the equilibrium

effects. For example, given the baseline estimate of ϕ̂ = −0.61 in (16), if we set γ = 2/3 we

obtain ρ = 0.49 and an elasticity of substitution of 1.96 (as opposed to 1.65 in the baseline

model of Table 3).

7.3 Latent heterogeneity and preferences for location

Jobs are unevenly distributed across locations and some occupations occur more frequently

in urban areas. To the extent that urban settings offer different amenities, the latent value of

a match may be related to its geographic prevalence. That is, the latent value of a worker-

occupation pair may depend on the location where it occurs more frequently. Occupations

concentrated in urban areas might therefore exhibit higher bijt if the latter components cap-

ture the value of urban amenities. We explore this conjecture by projecting estimates of latent

returns bijt on measures that capture how frequent occupations are in specific settings (urban

vs rural; by population density). We find (see Appendix H) that urban and central city effects

are not precisely estimated for men, although there is a positive and significant correlation

between latent components and population density. Estimates for women, in contrast, are

highly significant and larger (see Table 22 of Appendix H). This suggests that location at-

tributes are relatively more important in the occupation choices of women. In all cases, the

coefficients are positive as jobs in urban areas have higher latent returns.
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7.4 Wage dispersion and rents

Does wage risk matter for rents? In Appendix M we explore this question by examining the

relationship between the dispersion of wages within each ijmt-cell and average rents. We

find that more wage dispersion is associated with higher rents. A 10-dollar increase in the

standard deviation of wages is associated with a 4.3% increase in monetary rents. Moreover,

the same increase in risk is associated with a positive change of about 0.3 standard deviations

in total match value. Both the observable and latent components of surplus contribute to the

positive risk-return relationship; however, the latent value accounts for a larger share of total

surplus in riskier occupations. This implies that latent employment values are proportionally

larger, as a share of total surplus, in occupations that exhibit more wage dispersion.

7.5 Compensating differentials and occupational mobility

Compensating differentials describe the trade-off between wages and latent returns for workers

who are indifferent between occupations. To illustrate the trade off, consider two occupations

denoted as A and B, which offer the same wage; however, A offers more amenities than B.

For simplicity, suppose that workers are homogeneous and value the latent aspects of each

occupation in the same way. If workers can freely move across occupations, those in B would

rationally switch to A. In equilibrium, this flow of workers would cause a change in relative

wages up to the point where the total return in occupation A equals that in occupation B.

When occupational mobility is not impeded, equilibrium forces result in systematic compen-

sating differentials that equalize overall returns. By the same token, higher switching costs and

less mobility imply that latent components are less accurately reflected in wage differences.

For this reason, compensating trade-offs may appear lower when job mobility is limited and

wages do not consistently respond to changes in the value of latent components. In Appendix

L we examine the relationship between compensating differentials and occupational mobility

(Kambourov and Manovskii, 2008; vom Lehn et al., 2022) by using workers’ gross flows across

occupation pairs as a proxy for the cost of occupational mobility (see Cortes and Gallipoli,

2018). Appendix Table 26 shows that compensating differentials respond to changes in mobil-

ity across occupation pairs. A 1% increase in the flow of workers within an occupation pair is

associated with an almost 10% increase in the monetary value of compensating differentials.

7.6 Alternative measures of compensating differentials

Our definition of compensating differentials emphasizes the trade-off between wages and latent

match values for workers who are marginal in their occupation choice. By definition, this mea-

sure includes the idiosyncratic valuations of the two marginal occupations. On the other hand,

the empirical literature often resorts to indirect measures of compensating differentials based

on covariation between current wages and proxies of non-wage compensation. In Appendix
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K we report two different measures of covariation between the wages and latent components

of overall returns. The first measure is based on the value of cov(uc(cijmt) − uih(hijmt), bijt),

which we estimate for each year and demographic group. Panel A of Appendix Table 25 re-

ports the results of this exercise and documents a positive and growing covariance for college

graduates, especially among men. For non-college workers we find negative covariations, with

a trend towards lower covariances among men. The positive and increasing covariances for

college men are in line with findings in Lehmann (2022), which estimates wage and non-wage

compensation for a sample of male workers who experience job-to-job transitions. The co-

variances reported in Panel A of Table 25 do not account for the idiosyncratic job valuations

across workers in the same demographic group. We extend our analysis and, as shown in

Panel B of Appendix Table 25, we report measures of covariation that include the average

of the idiosyncratic match values within each cell. The cell-specific averages of idiosyncratic

match values θ̄ijmt are obtained through model simulations and we use them to estimate the

following covariances:

cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt).

The resulting measures account for the idiosyncratic component of latent values and are

different from estimates in Panel A. Specifically, Panel B shows negative and diminishing

covariations for all demographic groups. This indicates the presence of positive and increasing

compensating differentials and is consistent with estimates based on our baseline definition of

compensating differentials.

8 Conclusions

Significant labor market shifts have occurred since the 1980s in both employment and wages.

Such changes convey information about different components of worker-occupation match

values. We suggest an approach to estimate these components by combining data on employ-

ment, earnings and hours worked within an equilibrium model of the labor market.

We model jobs as bundles of observable and latent characteristics that cannot be separately

acquired. The analysis emphasizes that similar jobs have different values to different workers.

Since employers cannot condition wages on latent returns, rents emerge in equilibrium. At the

margin, compensating differential can be defined by considering workers whose employment

rents are close to zero. We estimate average rents and compensating differentials for all

worker-occupation pairs.

Our estimates indicate that employment rents have risen among educated workers while

stagnating for others. At the same time, compensating differentials increased in most jobs.

Compensating differentials are strongly associated with occupational mobility, which suggests

that workers may use job mobility to trade off alternative occupation characteristics.
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These findings suggest that the U.S. workforce has changed in composition and in latent

valuations of employment since 1980. At the same time, large shifts in production arrange-

ments and technology have reshaped the demand side of the labor market. To bring together

demand and supply of match-specific inputs, we consider a technology that employs match-

specific intermediate inputs, estimate its parameters and use it to gauge the intensity of

equilibrium responses to technological change and to shifts in the distribution of latent match

values. Endogenous wage responses, mediated by a production technology that aggregates

worker-occupation inputs, make it possible to characterize both employment and earnings as

equilibrium outcomes.

To quantify the contribution of demand and supply forces to observed labor market pat-

terns, we design counterfactual exercises that compare the influences of technological progress

and of changes in latent match values on the distribution of workers across jobs and their

compensation. This analysis suggests that shifts in latent match values are important when

accounting for employment patterns. For example, had latent returns stayed at their 1980

levels, the participation of both high and low education men would be much higher in 2018.

Technological change has had asymmetric effects on the labor market participation of male

workers: while it offset the negative impact of drops in latent returns among college-educated

men, it further reduced the participation of non-college men.

The picture looks different among women, as changes in latent returns and technology

reinforced each other to bolster female labor force participation. For non-college women,

latent returns and technological change contributed similarly to increased participation. For

college-educated women, the main contribution has come from technological change.

The equilibrium analysis indicates that the evolution of wages in worker-occupation matches

is largely explained by technological change. Price responses due to shifts in occupation

headcounts, while present, are less prominent than the price effects induced by technological

transformation.

33



References

Aaronson, D. and French, E. (2004). The effect of part-time work on wages: Evidence from

the social security rules. Journal of Labor Economics, 22(2):329–352.

Acemoglu, D. and Autor, D. (2011). Skills, tasks and technologies: Implications for employ-

ment and earnings. Handbook of Labor Economics, 4:1043–1171.

Aguiar, M., Bils, M., Charles, K. K., and Hurst, E. (2017). Leisure luxuries and the labor

supply of young men. Working Paper 23552, National Bureau of Economic Research.

Altonji, J. G. and Segal, L. M. (1996). Small-sample bias in gmm estimation of covariance

structures. Journal of Business & Economic Statistics, 14(3):353–366.

Autor, D. H., Dorn, D., Hanson, G. H., and Song, J. (2014). Trade adjustment: Worker-level

evidence. The Quarterly Journal of Economics, 129(4):1799–1860.

Autor, D. H., Katz, L. F., and Kearney, M. S. (2006). The polarization of the US labor

market. The American Economic Review, 96(2):189–194.

Bartik, T. J. (1991). Who Benefits from State and Local Economic Development Policies?

W.E. Upjohn Institute.

Cortes, G. M. and Gallipoli, G. (2018). The costs of occupational mobility: An aggregate

analysis. Journal of the European Economic Association, 16(2):275–315.

Cortes, G. M., Jaimovich, N., and Siu, H. E. (2017). Disappearing routine jobs: Who, how

and why? Journal of Monetary Economics, 91:69–87.

Cortes, G. M., Jaimovich, N., and Siu, H. E. (2018). The “end of men” and rise of women in

the high-skilled labor market. NBER Working Paper No. 24274.

Dube, A., Naidu, S., and Reich, A. D. (2022). Power and dignity in the low-wage labor

market: Theory and evidence from wal-mart workers. Technical report, National Bureau

of Economic Research.

Erosa, A., Fuster, L., Kambourov, G., and Rogerson, R. (2022a). Hours, occupations, and gen-

der differences in labor market outcomes. American Economic Journal: Macroeconomics,

14(3):543–90.

Erosa, A., Fuster, L., Kambourov, G., and Rogerson, R. (2022b). Labor supply and occupa-

tional choice. Technical report, National Bureau of Economic Research.

Goldin, C. (2014). A grand gender convergence: Its last chapter. American Economic Review,

104(4):1091–1119.

34



Goldin, C. and Katz, L. (2008). The race between education and technology. Belknap Press.

Hamermesh, D. S. (1999). Changing inequality in markets for workplace amenities. The

Quarterly Journal of Economics, 114:1085–1123.

Heckman, J. J., Lochner, L., and Taber, C. (1998). Explaining rising wage inequality: Ex-

plorations with a dynamic general equilibrium model of labor earnings with heterogeneous

agents. Review of Economic Dynamics, 1(1):1–58.

Hsieh, C.-T., Hurst, E., Jones, C. I., and Klenow, P. J. (2019). The allocation of talent and

U.S. economic growth. Econometrica, 87(5):1439–1474.

Kambourov, G. and Manovskii, I. (2008). Rising occupational and industry mobility in the

United States: 1968-97. International Economic Review, 49(1):41–79.

Katz, L. and Autor, D. (1999). Changes in the wage structure and earnings inequality.

Handbooks of Labor Economics, 3:1463–1558.

Katz, L. F. and Murphy, K. M. (1992). Changes in relative wages, 1963–1987: Supply and

demand factors. The Quarterly Journal of Economics, 107(1):35.

King, M., Ruggles, S., Alexander, T., Flood, S., Genadek, K., Schroeder, M. B., Trampe,

B., and Vick, R. (2010). Integrated Public Use Microdata Series, Current Population Sur-

vey: Version 3.0. [Machine-readable database]. Technical report, University of Minnesota,

Minneapolis, MN.
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A Identification and estimation

This section discusses the identification and estimation of model parameters and provides an

overview of the empirical analysis.

Identification: utility and technology parameters

To show the identification of the structural parameters, we consider a simplified version of

the model in which non-labor income is zero for all workers, and we show that we can identify

all the parameters even without exploiting the empirical variation in this dimension. This

assumption simplifies the problem by allowing us to derive a closed form solution to the

first order condition. First consider the time-consumption problem described in equation (1).

With the assumed functional forms, the problem becomes

Uijmt = max
hijmt

c1−σ
ijmt − 1

1− σ
− ψi

h1−γ
ijmt

1− γ
+ bijt

s.t. cijmt = wijmthijmt

(25)

the associated first order condition in logarithmic form is

log (hijmt) = − 1

σ − γ
log (ψi) +

1− σ

σ − γ
log (wijmt) (26)

The empirical counterpart of this is

log (hijmt) = αi + β log (wijmt) + ϵ1ijmt ≡ f
(
Xijmt, Ω̃i

)
+ ϵ1ijmt (27)

with

αi = − 1

σ − γ
log (ψi) β =

1− σ

σ − γ
(28)

With the linear specification of f(·, ·), moments (17) and (18) describe an OLS estimator of

(27). From the estimation of the latter equation we can obtain γ and ψi as a function of σ:

γ = σ − 1− σ

β
ψi = exp

(
−1− σ

β
αi

)
(29)

We are now left with three sets of parameters to estimate, namely σ, σθ, and bijt, and at

least three moments from equations (19) and (20), given that Z2
ijmt has at least two elements
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Z2
1,ijmt and Z

2
2,ijmt. From eq. (19) we have

b̃ijt = E

Υijmt −
uc

(
wijmtĥijmt

)
− uih

(
ĥijmt

)
− uc (0)

σθ

∣∣∣∣∣∣i, j, t
 (30)

where b̃ijt =
bijt
σθ

. Plugging this into (20) gives

E

Υijmt −
uc

(
wijmtĥijmt

)
− uih

(
ĥijmt

)
− uc (0)

σθ

−E

Υijmt −
uc

(
wijmtĥijmt

)
− uih

(
ĥijmt

)
− uc (0)

σθ

∣∣∣∣∣∣i, j, t
Z2

ijmt

 = 0 (31)

which is a system of at least two equations in two unknowns, σ and σθ, which drives the

identification of the latter. Once σ and σθ are identified, eq. (30) identifies bijt.

Production function identification.

On the firm side, taking the ratio between the wages for two demographic groups within an

occupation (eq. (7)),we have that
wijmt

wi′jmt
=
βijt
βi′jt

(32)

which shows that the β’s are directly identifiable from wage data as long as we normalize the

value of the β’s for one demographic group (e.g. setting β1jt = 1 for all j and t). Taking a

similar ratio within demographic groups across occupations and using market clearing gives

wijmt

wij′mt
=

αjtβijt
αj′tβij′t

(
L̃j′mt

L̃jmt

)1−ρ

=
αjtβijt
αj′tβij′t

(∑
i′ βi′j′tLi′j′mt∑
i′ βi′jtLi′jmt

)1−ρ

(33)

Once we know the β’s, we can identify the α′s (up to a normalization) and ρ’s as follows.

Taking the log of eq. (33) for j′ = 1 gives

log

(
wijmt

wi1mt

)
= log

(
αjt

α1t

)
+ log

(
βijt
βi1t

)
+ (ρ− 1) log

(∑
i′ βi′jtLi′jmt∑
i′ βi′1tLi′1mt

)
(34)

Since, at this point, the β’s are known, one can compute Λjmt = log
(∑

i′ βi′jtLi′jmt∑
i′ βi′1tLi′1mt

)
,

Bijt =
βijt

βi1t
and Wijmt = log

(
wijmt

wi1mt

)
and regress the latter on Λjmt and a set of occupation

dummies γ, separately for each year:

Wijmt = γjt + ψBijt + ϕΛjmt + ϵijmt (35)
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Then the α’s are identified by
αjt

α1t
= eγ̂jt imposing

∑
j αjt = 1 for each t, and ρ by ρ =

(
1 + ϕ̂

)
.

Once all these parameters are identified, the TFP parameters A’s are identified as residuals

using the fact that in our model, thanks to the constant returns to scale assumption, total

production is Υmt =
∑

i

∑
j wijmtLijmt.
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B Production sector: derivations

In this appendix, we report all the derivations concerning the production function. To reduce

notation cluttering we omit the time and market indexes in all the equations.

We begin by considering the intermediate firm’s problem in eq. (5) that, plugging the

constraints into the objective function, becomes

max
Lijv

PY (1−ρ)zρjv

(∑
i

βijLijv

)ρ

−
∑
i

w̃ijLijv (36)

the associated first order condition is

w̃ij = PY (1−ρ)zρjvρ

(∑
i′

βi′jLi′jv

)ρ−1

βij (37)

For any two firms v, v′ ∈ Vj the latter gives

zρjv

(∑
i

βijLijv

)ρ−1

= zρjv′

(∑
i

βijLijv′

)ρ−1

(38)

∑
i

βijLijv′ =
z

ρ
ρ−1

jv

z
ρ

ρ−1

jv′

∑
i

βijLijv (39)

Integrating over v′ ∈ Vj we get

∑
i

βijLij = z
ρ

ρ−1

jv

∫
v′∈Vj

1

z
ρ

ρ−1

jv′

dv′
∑
i

βijLijv (40)

∑
i

βijLijv = z
−ρ
ρ−1

jv

∫
v′∈Vj

1

z
ρ

ρ−1

jv′

dv′

−1∑
i

βijLij (41)

The aggregate production function is given by

Y =

(∫
v
υρjvdv

) 1
ρ

(42)

=

∑
j

∫
v∈Vj

υρjvdv

 1
ρ

(43)

=

∑
j

∫
v∈Vj

zρjv

(∑
i

βijLijv

)ρ

dv

 1
ρ

(44)
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Using (41) this gives

Y =

∑
j

∫
v∈Vj

zρjv

(∑
i

βijLijv

)ρ

dv

 1
ρ

(45)

=

∑
j

∫
v∈Vj

z
ρ

1−ρ

jv dv

∫
v′

1

z
ρ

ρ−1

jv′

dv′

−ρ(∑
i

βijLij

)ρ


1
ρ

(46)

=


∑
j

(∫
v∈Vj

z
ρ

1−ρ

jv dv

)1−ρ

︸ ︷︷ ︸
α̃j

(∑
i

βijLij

)ρ


1
ρ

(47)

=

∑
j

α̃j

(∑
i

βijLij

)ρ
 1

ρ

(48)

= A

∑
j

αj

(∑
i

βijLij

)ρ
 1

ρ

(49)

where αj =
α̃j∑
j′ α̃j′

and A =
(∑

j′ α̃j′

) 1
ρ
. Moreover, substituting (41) into (37) we have

w̃ij = PY (1−ρ)ρ

(∫
v∈Vj

z
ρ

1−ρ

jv dv

)1−ρ

︸ ︷︷ ︸
α̃j

(∑
i′

βi′jLi′j

)ρ−1

βij (50)

w̃ij

P
= Y (1−ρ)ρα̃j

∑
j′ α̃j′∑
j′ α̃j′

(∑
i′

βi′jLi′j

)ρ−1

βij (51)

wij = ρAραjβij

(
Y∑

i′ βi′jLi′j

)(1−ρ)

(52)

where wij =
w̃ij

P .
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C Model with capital inputs

The setup is similar to the baseline model. Here, we assume that intermediate good producers

also use capital in production. They solve

max
pjv ,λjv ,Lijv

pjvλjv −
∑
i

w̃ijLijv − rKjv (53)

s.t. λjv = zjv

(∑
i

βijLijv

)γ

(ηjKjv)
1−γ (54)

pjv =

[
λjv
Y

]−(1−ρ)

P (55)

Equivalently

max
Lijv

PY (1−ρ)zρjv

(∑
i

βijLijv

)ργ

(ηjKjv)
ρ(1−γ) −

∑
i

w̃ijLijv − rKjv (56)

The associated first order conditions are

w̃ij = PY (1−ρ)zρjvργ

(∑
i′

βi′jLi′jv

)ργ−1

(ηjKjv)
ρ(1−γ) βij (57)

and

r = PY (1−ρ)zρjvρ (1− γ)

(∑
i′

βi′jLi′jv

)ργ

(ηjKjv)
ρ(1−γ)−1 ηj (58)

Dividing the two first order conditions by each other we get

w̃ij

r
= βij

γ

1− γ

Kjv∑
i′ βi′jLi′jv

⇒ Kjv =
wij (1− γ)

rγβij

∑
i′

βi′jLi′jv (59)

Notice that this implies

Kjv∑
i′ βi′jLi′jv

=
w̃ij (1− γ)

rγβij
=

Kj∑
i′ βi′jLi′j

(60)

where Kj =
∫
v′∈Vj

Kjvdv and Lij =
∫
v′∈Vj

Lijvdv.

Using (59) into (57) we get

w̃ij =

(
w̃ij

r

)ρ(1−γ)

PY (1−ρ)zρjvργ
1−ρ(1−γ) (1− γ)ρ(1−γ) η

ρ(1−γ)
j

(∑
i′

βi′jLi′jv

)ρ−1

β
1−ρ(1−γ)
ij

(61)
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wij = Ξη
ρ(1−γ)

1−ρ(1−γ)

j z
ρ

1−ρ(1−γ)

jv βij

(∑
i′

βi′jLi′jv

) ρ−1
1−ρ(1−γ)

(62)

where Ξ =

[
Y (1−ρ)ργ

(
1−γ
rγ

)ρ(1−γ)
] 1

1−ρ(1−γ)

and wij =
w̃ij

P as before.

Notice that (62) implies the same relationship described in (39) and, thus, equation (41).

Using (41) in (62) we get

wij = ΞΛjβij

(∑
i′

βi′jLi′j

) ρ−1
1−ρ(1−γ)

(63)

where Λj = η
ρ(1−γ)

1−ρ(1−γ)

j

(∫
v∈Vj

1

z
ρ

ρ−1
jv

dv

) 1−ρ
1−ρ(1−γ)

. Dividing the latter by the same equation for

j = 1 and taking logs

log

(
wij

wi2

)
= log

(
Λj

Λ1

)
+ log

(
βij
βi1

)
+

ρ− 1

1− ρ(1− γ)
log

(∑
i′ βi′jLi′j∑
i′ βi′1Li′1

)
(64)

The empirical counterpart of this equation is equivalent to that in the paper.

Wijmt = γjt + ψB̂ijt + ϕΛ̂jmt + ϵijmt (65)

However, it is not possible to recover the value of all the structural parameters from the

estimated reduced form equation.

The elasticity of substitution in production. In the baseline model we have ϕ =

ρbase − 1. In this generalized model, however, ϕ = ρ−1
1−ρ(1−γ) . Thus

1− ρbase =
1− ρ

1− ρ(1− γ)
(66)

If ρ ∈ [0, 1], then 1− ρ(1− γ) ∈ [0, 1] and 1− ρbase > 1− ρ, that is

ρbase < ρ (67)

This implies that if the baseline estimate ρbase is a lower bound of the curvature parameter ρ.

Assuming γ = 2/3, a common choice in the literature, the baseline estimate of ϕ̂ = −0.61

delivers ρ = 0.49 which implies an elasticity of substitution of about 1.96.
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D Elasticity of labor supply

The elasticity of labor supply can be defined at the level of different worker-occupation (i, j)

cells. In what follows we overview how we estimate the distributions of different labor supply

elasticities. Next we relate these estimates to aggregate labor supply.

D.1 Uncompensated elasticity: intensive margin

To compute the uncompensated elasticity of labor supply we start from the equation that

defines the MRS between hours and wages for the intensive labor supply choice:

(wijmthijmt + yimt)
−σ = ψih

−γ
ijmt.

The total differential of the MRS is:

[
−σ(wijmthijmt + yimt)

−σ−1wijmthijmt + (wijmthijmt + yimt)
−σ
]
dwijmt+[

−σ(wijmthijmt + yimt)
−σ−1w2

ijmt

]
dhijmt = −γh−γ−1

ijmt ψdhijmt

After rearranging:

dhijmt

dwijmt
=

−σ(wijmthijmt + yimt)
−σ−1wijmthijmt + (wijmthijmt + yimt)

−σ

σ(wijmthijmt + yimt)−σ−1w2
ijmt − γh−γ−1

ijmt ψ

The uncompensated elasticity at the intensive margin is,

εintijmt =
dhijmt

dwijmt

wijmt

hijmt

Figure 7a shows the distribution of the intensive margin elasticity of labor supply in the

population based on model estimates. The average elasticity is 0.15.

D.2 Uncompensated elasticity: extensive margin

The extensive margin elasticity of labor supply is defined as the ratio of the percentage change

in the number of workers choosing a particular occupation and the percentage change in the

wage rate paid in that occupation. That is,

εextijmt =
dµijmt

dwijmt

wijmt

µijmt
.
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From equation (3) we get:

dµijmt

dwijmt
= µimt

eUijmt/σθ 1
σθ

[
u′c(cijmt)

(
hijmt +

dhijmt

dwijmt
wijmt

)
− ui

′
(hijmt)

hijmt

dwijmt

]
[∑J

j′=0 exp (Uij′mt/σθ)
]2 J∑

j′=0,j′ ̸=j

exp (Uij′mt/σθ)

Figure 7b shows the distribution of extensive margin elasticities in the population, obtained

from the model estimates. The average elasticity is between 0.55 and 0.60 across all years.

D.3 Uncompensated elasticity: total response

The total labor supply (hours) within each (i, j,m, t) cell is denoted as Lijmt = µijmthijmt.

We can compute the total elasticity of labor supply to changes in the wage rate within each

cell as

εtotijmt =
Lijmt

dwijmt

wijmt

Lijmt
=

(
dµijmt

dwijmt
hijmt +

dhijmt

dwijmt
µijmt

)
wijmt

Lijmt
(68)

Figure 7c shows the distribution of total elasticity estimates in the population. The average

is 0.72. Equation (68) allows one to compute the relative contribution of the extensive margin

(first term in the summation) and the intensive margin (second term) to total elasticity. On

average the extensive margin accounts for about 78% of the total elasticity.

D.4 Aggregate elasticity

Aggregate labor supply is defined as Lt =
∑

i,j,m Lijmt. We define the aggregate elasticity of

labor supply as the percent change in aggregate supply corresponding to a percent change in

the average wage assuming that the change in the average wage is obtained by a homogeneous

change across the distribution of wages (all wages change by the same amount), namely

εaggt =
dLt

dw̄t

w̄t

Lt

where w̄t is the average wage and

dLt

dw̄t
=
∑
ijm

 Lijmt

dwijmt
+
∑
j′

Lijmt

dwij′mt

 .

The second summation in the latter equation captures the fact that a change in the wage rate

in one occupation affects labor supply in all the other occupations. This spill-over effect can
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be further broken down into different components,

Lijmt

dwij′mt
=
d(µijmthijmt)

dwij′mt
=

dµijmt

dwij′mt

= −µimte
Uijmt/σθ

eUij′mt/σθ 1
σθ

[
u′c(cij′mt)

(
hij′mt +

dhij′mt

dwij′mtwij′mt

)
− ui

′
h

dhij′mt

dwij′mt

]
[∑J

j′=0 exp (Uij′mt/σθ)
]2 .

The aggregate elasticity is between 0.75 and 0.78, depending on the year.

D.5 Uncompensated cross-elasticities: extensive margin

The elasticity of labor supply of occupation j in response to a change in the wage paid to

occupation j′ for demographic group i is defined as

εcrossijj′mt =
dµijmt

dwij′mt

wij′mt

µijmt
.

From equation (3), we have

dµijmt

dwij′mt
= − 1

σθ
eUijmt/σθ

 J∑
j′=0

e
Uij′mt/σθ

−2

eUij′mt/σθ
dUij′mt

dwij′mt
µimt

= − 1

σθ

µijmtµij′mt

µimt

dUij′mt

dwij′mt

where from the first to the second line we used equation (3) twice for occupations j and

j′, and

dUij′mt

dwij′mt
=
d
(
uc(wij′mthij′mt + yimt)− uih

(
hij′mt

))
dwij′mt

=
(
wij′mthij′mt + yimt

)−σ
(
hij′mt + wij′mt

dhij′mt

dwij′mt

)
− ψih

−γ
ij′mt

dhij′mt

dwij′mt
.

Finally, the derivative of hours supplied with respect to wages can be obtained from the

equation that defines the MRS between hours and wages for the intensive labor supply choice:

(wij′mthij′mt + yimt)
−σ = ψih

−γ
ij′mt.
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The total differential is given by:

[
−σ(wij′mthij′mt + yimt)

−σ−1wij′mthij′mt + (wij′mthij′mt + yimt)
−σ
]
dwij′mt+[

−σ(wij′mthij′mt + yimt)
−σ−1w2

ij′mt

]
dhij′mt = −γh−γ−1

ij′mt ψdhij′mt

which, after rearranging, gives

dhij′mt

dwij′mt
=

−σ(wij′mthij′mt + yimt)
−σ−1wij′mthij′mt + (wij′mthij′mt + yimt)

−σ

σ(wij′mthij′mt + yimt)−σ−1w2
ij′mt − γh−γ−1

ij′mt ψ

D.6 Uncompensated elasticities to latent values

The extensive margin elasticity of labor supply to changes in latent values is defined as the

ratio of the percentage change in the number of workers choosing a particular occupation and

the percentage change in the latent value of that occupation. That is,

εbijmt =
dµijmt

dbijt

|bijt|
µijmt

.

where the absolute value operator is needed as 98% of the estimated values for bijt are negative.

From equation (3) we get:

dµijmt

dbijt
= µimt

1
σθ
eUijmt/σθ[∑J

j′=0 exp (Uij′mt/σθ)
]2 J∑

j′=0,j′ ̸=j

exp (Uij′mt/σθ)

Figure 7d shows the distribution of these elasticities in the population, obtained from the

model estimates. The average elasticity is between 1.33 and 1.57 across all years.
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(a) Wage elasticity: intensive margin
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Figure 7: Distribution of the elasticities of labor supply (extensive and intensive margin) to
changes in wages and latent values.
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E Bartik instrument

In this appendix, we provide an additional instrumental variable to estimate the parameters

governing labor demand. The model suggests that differences in the labor participation (head-

count) in each occupation over time are the by-product of worker match values, conditional

on their demographic group, or due to shifts in the overall demographic composition of the

labor force.

The instrumental variable developed in this appendix leverages aggregate demographic

shifts that exogenously impact local labor markets, holding constant the occupation shares of

workers within a market and demographic group. We let sijmt be the share of type i workers

in market m choosing to work in occupation j. The predicted labor supply to occupation j

is L̂h
jmt =

∑
i sijmt−10µimt, where h denotes the headcount and sijmt−10 are the employment

shares in the previous decade. We use the latter measure to construct the predicted relative

supply Λ̂h
jmt = log

(
L̂h
jmt

L̂h
1mt

)
in period t. The instrument is defined as

IVjmt = ∆Λ̂h
jmt = Λ̂h

jmt − log

(
Lh
jmt−10

Lh
1mt−10

)
(69)

where Lh
jmt−10 is the actual number of workers in occupation j in market m at time t − 10.

Given exogeneity of aggregate shifts in the demographic structure of the labor force, this is a

valid instrument as it is correlated with the regressor but is uncorrelated with the error term.

Table 6 shows that the estimation results using the Bartik instrument are comparable to

the results presented in the main text.
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OLS IV
(1) (2)

ϕ̂ -0.0834 -0.6041***
( 0.0610) ( 0.1665)

ψ̂ 0.9771*** 0.9771***
( 0.0413) ( 0.0413)

Observations 2,496 2,496

Test ψ̂ = 1 (p-val) 0.5796 0.5798
Implied ρ 0.9166*** 0.3959**

( 0.0610) ( 0.1665)
Implied elast. of sub. 11.9974 1.6554

( 58.5230) (100.5079)

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Estimation results for equation (16) in first differences using the Bartik instrument.
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F Method-of-moments estimates

F.1 Preference parameters and production technology share

Table 7 shows estimates of the curvature of consumption utility (σ) and of the scale parameters

of the extreme value preference shock (σθ). Column 1 reports estimates obtained without using

instruments. That is, Z1
ijmt includes the logarithm of contemporaneous wages and non-labor

income, Z2
ijmt are the logarithm of contemporaneous wages. In columns (2), (3), and (4) we

instrument for wages and non-labor income using their 10-year and 20-year lagged values.

We refer to column (2) as our baseline specification. Results are not sensitive to using the

estimates in columns (3) or (4). Table 8 shows estimates of the remaining utility parameters:

the weight and curvature of disutility from labor (ψ, γ). Estimates of the latent match-specific

surplus for different (i, j) matches for different years (bijt are in tables 9 to 13) As for the

production function estimates, tables 14 to 19 show point estimates and standard errors (in

parenthesis) for technology input shares in different years (1980, 1990, 2000, 2010, 2018).

Share estimates are presented for all occupation-worker combinations.

NON-IV IV
(1) (2) (3) (4)

σ̂ 0.3002*** 0.2753*** 0.2859*** 0.2810***
( 0.0191) ( 0.0736) ( 0.0780) ( 0.0649)

σ̂θ 2.9685*** 2.9685*** 2.9685*** 2.9685***
( 0.1448) ( 0.4236) ( 0.2022) ( 0.2008)

Instrumental Variables
wijmt−10 No Yes No Yes
wijmt−20 No No Yes Yes
yimt−10 No Yes No Yes
yimt−20 No No Yes Yes

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Results from the GMM estimator in equation (21). Prameters and standard errors
for σ̂θ are scaled down by 1000.
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NON-IV IV
(1) (2) (3) (4)

γ̂ -4.1489 -4.8535 -3.8444 -3.8444
( 0.2197) ( 0.6095) ( 0.4497) ( 0.4402)

ψi

Age 25-34

Non-college

Men 0.9982 0.0058 11.9290 11.9290
( 0.1483) ( 0.0032) ( 6.9124) ( 3.5599)

Women 1.6933 0.0109 19.2453 19.2453
( 0.2274) ( 0.0053) ( 11.0030) ( 5.8896)

College

Men 1.0692 0.0062 12.9025 12.9025
( 0.1619) ( 0.0035) ( 7.7103) ( 3.9269)

Women 1.5900 0.0099 18.4665 18.4665
( 0.2234) ( 0.0051) ( 10.8629) ( 5.6986)

Age 35-44

Non-college

Men 1.0102 0.0058 12.2070 12.2070
( 0.1536) ( 0.0033) ( 7.2603) ( 3.6975)

Women 1.6568 0.0106 18.9706 18.9706
( 0.2263) ( 0.0053) ( 10.9762) ( 5.8275)

College

Men 1.0841 0.0062 13.2802 13.2802
( 0.1692) ( 0.0037) ( 8.2564) ( 4.1372)

Women 1.9095 0.0122 22.0656 22.0656
( 0.2712) ( 0.0065) ( 13.2986) ( 7.0254)

Age 44-54

Non-college

Men 1.0745 0.0063 12.9847 12.9847
( 0.1634) ( 0.0035) ( 7.8101) ( 3.9694)

Women 1.5534 0.0098 17.8936 17.8936
( 0.2137) ( 0.0050) ( 10.3727) ( 5.4770)

College

Men 1.1466 0.0066 14.0492 14.0492
( 0.1787) ( 0.0039) ( 8.8377) ( 4.4114)

Women 1.6911 0.0106 19.6681 19.6681
( 0.2508) ( 0.0057) ( 12.1845) ( 6.3714)

Instrumental Variables
wijmt−10 No Yes No Yes
wijmt−20 No No Yes Yes
yimt−10 No Yes No Yes
yimt−20 No No Yes Yes

Bootstrapped standard errors in parentheses

Table 8: Estimates of the utility parameters realtive to the disutility of hours worked from
the GMM estimator in equation (21). Parameter estimates and standard errors for ψi are
scaled up by 1014.
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Year
Occupation 1980 1990 2000 2010 2018

Exec., Admin., Manag. 0.1165 0.1234 0.1329 0.1347 0.1408
( 0.0087) ( 0.0096) ( 0.0104) ( 0.0118) ( 0.0129)

Manag. rel. 0.0578 0.0667 0.0740 0.0851 0.0900
( 0.0055) ( 0.0040) ( 0.0038) ( 0.0036) ( 0.0021)

Professional 0.1242 0.1411 0.1512 0.1625 0.1672
( 0.0119) ( 0.0144) ( 0.0161) ( 0.0193) ( 0.0215)

Technicians 0.0574 0.0647 0.0694 0.0751 0.0813
( 0.0056) ( 0.0052) ( 0.0051) ( 0.0057) ( 0.0050)

Sales 0.0854 0.0985 0.0971 0.0927 0.0872
( 0.0021) ( 0.0044) ( 0.0035) ( 0.0033) ( 0.0019)

Admin. Support 0.1056 0.1009 0.0968 0.0902 0.0818
( 0.0064) ( 0.0056) ( 0.0059) ( 0.0043) ( 0.0024)

Protective Services 0.0386 0.0419 0.0441 0.0499 0.0466
( 0.0062) ( 0.0067) ( 0.0069) ( 0.0070) ( 0.0067)

Other Services 0.0525 0.0540 0.0566 0.0603 0.0624
( 0.0014) ( 0.0012) ( 0.0008) ( 0.0012) ( 0.0009)

Mechanics 0.0630 0.0578 0.0563 0.0516 0.0471
( 0.0040) ( 0.0043) ( 0.0045) ( 0.0055) ( 0.0061)

Construction Traders 0.0622 0.0555 0.0519 0.0492 0.0505
( 0.0037) ( 0.0042) ( 0.0042) ( 0.0051) ( 0.0056)

Precision Prod. 0.0710 0.0569 0.0509 0.0424 0.0397
( 0.0034) ( 0.0053) ( 0.0053) ( 0.0060) ( 0.0062)

Machine Operators 0.0823 0.0676 0.0549 0.0445 0.0430
( 0.0007) ( 0.0024) ( 0.0039) ( 0.0050) ( 0.0055)

Transportation 0.0834 0.0710 0.0639 0.0616 0.0625
( 0.0009) ( 0.0010) ( 0.0017) ( 0.0020) ( 0.0020)

Bootstrapped standard errors in parentheses

Table 14: Estimates of αjt.
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F.2 Technology shares by worker group: match level estimates

Figure 8 breaks down changes in production shares by worker type and shows that the share

of routine manual occupations dropped or stagnated for all gender and education groups.

Workers in college-level jobs experienced large gains in all but routine manual occupations.

College-level gains in cognitive occupations are the largest, suggesting a growing match-specific

return. However, a college degree did not significantly improve productivity in manual occu-

pations.
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Figure 8: Average production shares of four broad occupation categories by worker demo-
graphic group (based on estimates of αjtβijt). Brackets are 95-percent confidence intervals
around point estimates.
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G Robustness: model with flexible disutility of work

In this appendix, we consider a model in which we allow te disutility of work to be a flexible

function of both demographic (as it is in he main text) and occupation. The exercise aims

at exploring the possibility that there is some important hidden heterogeneity of workers’

preferences for different occupations that might be relevant for our analysis of rents and

compensating differentials. It is no surprise that the more flexible model can better explain

the variability of hours worked in the data but, as we show here, our results concerning rents

and compensating differentials are not substantially affected.

In practice we re-estimate the model using a more flexible specification for the utility cost

of hours worked, namely

uih (h) = ψij
h1−γ

1− γ
.

With this specification, within each demographic group workers are allowed to value time

spent at work differently. Figure 9 shows the goodness of fit for this model. Just like the

baseline model, the enriched model can explain 99% and 95% of the variation in employment

and wages. Yet it performs better in terms of hours worked explaining 87% of total variation.

Despite the improvement in terms of goodness of fit, tables 20 and 21, which are the coun-

terparts of tables 1 and 5, show that the flexible model produces comparable compensating

differentials. As for rents, the model produces slightly lower rents but growth patterns are

comparable to those in the main text.
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Figure 9: Goodness of fit. Left: model implied wages vs. data. Center: model implied
employment vs. data. Right: model implied hours worked vs. data.
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Average Rents (year 2000 $)

Year All College Men College Women Non-College Men Non-College Women

1980 12,700 20,559 11,697 13,891 7,737
1990 12,915 22,093 13,374 13,054 8,301
2000 14,035 24,813 15,242 13,110 8,979
2010 13,100 23,983 15,134 11,210 7,994
2018 13,966 24,798 15,938 11,366 8,044

Table 20: Estimated average rents by year and demographic group.

Average Compensating Differentials (year 2000 $)

Year All College Men College Women Non-College Men Non-College Women

1980 5,537 9,499 6,765 5,185 3,861
1990 6,513 10,374 7,077 6,162 5,042
2000 8,116 15,641 8,437 7,213 5,724
2010 7,715 12,759 9,022 6,734 6,355
2018 7,655 14,078 9,560 6,688 5,489

Table 21: Average absolute compensating differentials by year and demographic group.
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H Projecting latent returns on observables

In this appendix, we investigate the determinants of latent returns by projecting their esti-

mates on observable variables. Given data constraints, we focus on the role of geographic

amenities and of gender discrimination.

H.1 Geography and urban amenities

The distribution of job opportunities is not homogeneous across geography. Some occupations

are more concentrated in urban, densely populated areas while others are in rural, less-dense

areas. Different geographic areas are also characterized by different levels of local amenities.

As a consequence, the location of an occupation can also affect its attractiveness.

Arguably, urban areas tend to offer more and better amenities making occupations that

are concentrated in urban areas more attractive. To explore this relationship we regress our

estimates of latent returns on several measures of the geographic location of occupations.10

For each occupation we compute: (i) the fraction of workers living in urban areas, (ii) the

fraction of workers in a central city, defined as the central city of a metropolitan area, and the

fraction of workers in urban areas excluding central cities (this measure is not available for

1990), (iii) average local population (available after the year 2000). We project our estimates

of latent returns on these three measures separately for men and women.

Table 22 show the estimation results. Columns 1, 3, and 5 report the results from regress-

ing bijt on the geographic variables without any other control. For men the coefficients are

often not significant and the R2 is always very low (low explanatory power). For women we

have always significant coefficients and relatively high R2, which suggests that geography is

more important in determining the occupational choices of women than those of men. In all

cases, the coefficients are positive: jobs in urban, dense areas are preferred. Adding controls

for age and education (columns 2, 5, and 6) makes the estimated coefficient bigger and more

significant for both men and women.

H.2 Gender-specific frictions

Besides capturing the value of amenities associated with each occupation, our estimates of

latent returns reflect the effects of gender-specific frictions in access to some occupations.

Larger frictions for a particular demographic group cause fewer workers from this group to

enter an occupation which, in our estimates, translates into a lower estimate of the corre-

sponding bijt. In this section, we explore this hypothesis by projecting the difference of our

estimates in latent returns between women and men on a proxy for gender-specific frictions.

10A caveat is in order. We must proxy job location with workers’ residence. Given this data limitation, a
more flexible interpretation is that the local-amenity value of an occupation is determined by the local amenities
that a worker can access given the geographic constraints imposed by the chosen occupation.
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Men

(1) (2) (3) (4) (5) (6)
bijt bijt bijt bijt bijt bijt

Frac. in urban area 0.660 2.989∗∗

(0.728) (0.963)

Frac. in central city 4.659 5.095∗

(2.368) (2.342)

Frac. in urban area (non central) 0.424 2.547
(1.235) (1.424)

Population density 1.276∗∗∗ 1.319∗∗∗

(0.335) (0.309)

Constant -2.356∗∗∗ -4.240∗∗∗ -3.618∗∗∗ -4.720∗∗∗ -12.58∗∗∗ -13.25∗∗∗

(0.603) (0.781) (0.821) (0.978) (2.801) (2.597)

Observations 390 390 312 312 234 234
R2 0.002 0.191 0.016 0.186 0.059 0.230
Age and Education FE No Yes No Yes No Yes
Year FE No Yes No Yes No Yes

Women

(1) (2) (3) (4) (5) (6)
bijt bijt bijt bijt bijt bijt

Frac. in urban area 10.57∗∗∗ 18.99∗∗∗

(1.164) (1.576)

Frac. in central city 36.58∗∗∗ 44.90∗∗∗

(3.465) (3.516)

Frac. in urban area (non central) 4.220∗ 9.527∗∗∗

(1.808) (2.138)

Population density 5.856∗∗∗ 6.017∗∗∗

(0.460) (0.460)

Constant -12.13∗∗∗ -19.06∗∗∗ -17.69∗∗∗ -22.96∗∗∗ -52.12∗∗∗ -53.69∗∗∗

(0.965) (1.279) (1.202) (1.468) (3.839) (3.863)

Observations 390 390 312 312 234 234
R2 0.175 0.300 0.330 0.416 0.411 0.433
Age and Education FE No Yes No Yes No Yes
Year FE No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 22: Results for job location.
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As a proxy for gender frictions we use differences in the occupation-specific unemployment

rate between women and men. The underlying assumption is that under competitive markets

if there is no gender-specific friction in access to an occupation, the unemployment rate

should be the same for men and women.11 Intuitively, we expect a higher difference in

unemployment rates (e.g. women’s unemployment relatively larger than men’s) to reflect

larger gender-specific frictions.

Table 23 shows the results of these projections. In Column 1, we see that the gap in un-

employment rates can explain alone 13.6% of the variation in the gender gap of latent returns.

The estimated coefficient is sizable in magnitude and of the expected sign (all variables are

standardized). An increase of one standard deviation in the unemployment gap corresponds

to a fall of 0.37 standard deviations in bijt. In Column 2 we include year fixed effects, age

and education fixed effects to control for differences in preferences of men and women that

arise with age (e.g. women of childbearing age might be less keen on working in certain

occupations), as well as education fixed effects. Results are not affected by these additional

controls.

To account for differences in productivity between men ad women, in Column 3 we include

gender gaps in estimated productivity βijt. This additional control does not affect the results

and, interestingly, the estimated coefficient on the productivity gap is negative suggesting

that women tend to be relatively more productive in occupations in which they get relatively

lower latent returns.

A possible concern is that, in occupations where the unemployment gap is largest, women

search for longer and are pickier about work conditions (e.g. flexibility in hours). Several

things can be said in this respect: (i) if the concern is about total hours worked, this shouldn’t

matter as hours are not part of the bijt as we account for them through a type-specific “disu-

tility of hours” term; (ii) if the concern is about work schedule flexibility, this might introduce

a bias. If women prefer jobs that allow for more flexibility and, conditional on choosing an

occupation, they search for longer to find the most flexible employer, the coefficient on the

unemployment gap would become more negative (that is, the coefficient would not only reflect

frictions but also longer search times due to preferences). For this reason, the coefficient we

estimate is a lower bound and, to get an upper bound, we add controls for occupation type

(Column 4) or occupation fixed effects (Column 5). These controls should also capture some

of the frictions’ impacts (averaged over time) and reduce the predictive power of the difference

in unemployment. That is indeed what we observe in Columns 4 and 5.

11In markets where workers are paid their marginal product, differences in productivity should be reflected
in wages and not in unemployment rates. In our model, systematic differences in productivity across demo-
graphic groups are captured by the production parameters βijt. As a robustness check, we control for the βijt

parameters in the regressions estimated below.
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(1) (2) (3) (4) (5)
Gap in bijt Gap in bijt Gap in bijt Gap in bijt Gap in bijt

Gap in unemp. rate -0.368∗∗∗ -0.371∗∗∗ -0.411∗∗∗ -0.241∗∗∗ -0.0767∗∗∗

(0.0472) (0.0458) (0.0421) (0.0343) (0.0162)

Gap in productivity -0.481∗∗∗ -0.151∗∗ 0.0624∗∗

(0.0546) (0.0488) (0.0230)

Non-Routine Cognitive -0.289∗∗

(0.102)

Routine Cognitive -0.608∗∗∗

(0.120)

Routine Manual 0.838∗∗∗

(0.0937)

Constant -0.00422 0.102 -0.111 -0.0302 -0.0388
(0.0471) (0.126) (0.118) (0.121) (0.0547)

Observations 389 389 389 389 389
R2 0.136 0.262 0.387 0.644 0.946
Age and Education FE No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Occupation FE No No No No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 23: Results for gender frictions.
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1980-2018 Change in Employment shares (pp)
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Figure 10: Changes in employment shares by occupation category. Comparison of baseline
and counterfactual scenarios between 1980 and 2018. Changes in percentage points.

I Counterfactual exercises: employment changes by occupa-

tion category

Figure 10 summarizes how changes in technology and latent returns have influenced employ-

ment in four broad occupation categories (defined in Table 2).

Non-routine occupations. The black bar in the top-left panel shows the well-documented

increase in non-routine cognitive (NRC) employment. From 1980 to 2018 the NRC employ-

ment share climbed by 10 percentage points. How much did technological change contribute

to this run-up? The impact of holding technology parameters fixed at their 1980 values is

twice as large as holding latent returns at their 1980 values. This shows that technology made

a considerably larger contribution to NRC employment growth.

The rightmost bar in each panel shows partial equilibrium outcomes where wages are held

at their 1980 levels. In the fixed wage experiments, like in the fixed technology ones, the effects

of technological change are muted. The key difference between fixed-technology and fixed-

wages is that the fixed-technology experiment allows for price responses to exogenous labor

supply changes like workforce composition. What we learn is that technological and workforce

composition changes have been comparatively more important drivers of NRC employment

than latent employment values.
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The second fastest growing occupation category was non-routine manual jobs (NRM),

which experienced employment growth of about 5 percentage points. Unlike NRC occupations,

this increase was almost exclusively driven by latent return components. In fact, in the fixed-

latent values experiment, the NRM employment growth collapses. Technological change and

equilibrium price adjustments contributed little to NRM employment patterns.

Routine occupations. The top-right panel performs similar exercises for routine cognitive

(RC) jobs, showing a slight decline in the employment share in these occupations (approxi-

mately, a 1.5 percentage points drop). Counterfactual experiments suggest that technology

has contributed the most to this drop.

Lastly, the bottom-right panel shows outcomes for routine manual (RM) jobs. Technology

and latent surplus both contributed to a 6 percentage point employment fall in these occupa-

tions, with technology having a stronger influence. The difference between partial equilibrium

and fixed technology outcomes suggests that general equilibrium effects mitigated the nega-

tive impact of technological change on routine manual employment. As workers flew out of

those jobs, marginal returns did increase and this, in turn, slowed the workers’ outflow.

To sum up, technological change has been a key driver of run-ups in the share of cognitive

and routine manual jobs. In NRM occupations the largest contribution has come from latent

return components. A comparison between Figure 4 and 10 (in particular, the counterfactual

exercises in which we keep technology at its 1980 level) shows that, while technology has had

a limited impact on the overall labor force participation of each demographic group, it did

have a significant impact on the type of occupation workers chose. Figure 10 illustrates that

technological change has contributed to the shift from routine occupations to non-routine

ones, especially in cognitive jobs.

Finally, in keeping with the findings for occupation shares, Figure 11 indicates that age

changes across occupation categories are driven by technological change, as opposed to latent

match values.

I.1 Accounting for changes in workforce and technology

Between 1980 and 2018, technological change played a pivotal role in shaping occupation

choice and relative wages. At the same time, the workforce changed significantly in terms

of its composition and latent valuations of employment. Table 24 shows wage deviations (in

percentage terms) relative to wages observed in 2018.

Each row in the table refers to a different counterfactual. The first row shows the wage

deviations when the distribution of total employment is the same as in 1980. This partial

equilibrium experiment corresponds to the one described in Figure 11 and reflects the direct

and short-term impact of technological change on wages. The positive gaps for college work-

ers, as opposed to the negative ones for non-college workers, confirm the asymmetric impact

of technology across education groups. In the second row, we allow for employment responses

72



1980-2018 Change in Hourly Wages ($)
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Figure 11: Changes in average hourly wage in four occupation categories. Actual versus
counterfactual scenarios between 1980 and 2018.

Counterfactual percentage change, relative to actual 2018 wages.

Demographic group
Holding fixed: College Men College Women Non-College Men Non-College Women
1980 Employment share 3.25% 5.79% -9.93% -2.54%
1980 Pop. composition and bijt 1.51% -1.32% -4.40% -4.50%
1980 Pop. composition only -0.23% 0.77% -6.33% -5.38%
Wage/hour in 2018 29.9 22.3 14.6 11.8

Table 24: Impact of demographic change on end-of-period (2018) wages.
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but hold the latent values bijt and the population composition fixed at their 1980 levels. A

comparison between the first row (1980 Employment share) and the second (1980 Pop. Com-

position and bijt) show that the equilibrium responses to technological change depressed the

wages of college graduates, especially women. Growing returns to cognitive and non-routine

manual occupations attracted more workers and limited the wage growth among college ed-

ucated workers, who are employed in these occupations. At the same time, declines in the

wages of non-college men were mitigated by the outflow from routine manual occupations.

In the third row, we allow for the historical changes in latent valuations of employment

while holding the population composition fixed. Therefore, the deviations shown in the third

row are due exclusively to changes in workforce demographic composition between 1980 and

2018. This row shows that a shrinking share of non-college workers lifted wages in this group.

Holding the workforce composition fixed at its 1980 levels, the wages of non-college workers

are lower than observed.

These findings highlight the presence of significant equilibrium responses due to changes

in workforce composition and latent employment valuations. They add to the evidence in

Figure 5 by confirming the prominent quantitative impact of technological change on relative

wages.
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J Analytical derivations of rents and of compensating differ-

entials

Employment rents. Average rents can be computed by solving the following integral

(see for example Lamadon et al., 2022):

Rijmt = E[Rι
ijmt] (70)

=

∫ wijmt

0
(wijmthijmt − whi(w, yimt))

1

µijmt(wijmt)

∂µijmt(w)

∂w
dw (71)

where µijmt(wijmt) is the conditional labor supply function. The term

fijmt(w) =
1

µijmt(wijmt)

∂µijmt(w)

∂w
(72)

is the conditional density function of the distribution of the reservation wage of workers of

type i choosing to work in j. In other words fijmt(w) denotes the mass of workers of type i

in market j and time t who chose occupation j and who are indifferent between their chosen

occupation and the second best option. The distribution of reservation wages has a mass at

w = 0 since certain workers would always choose occupation j even if the wage rate was equal

to zero.

Before solving the integral numerically, we note that

∂µijmt(w)

∂w
= Bijmt(w)Cijmt(w)

Aimt(w)− Cijmt(w)

A2
ijmt(w)

µimt (73)

where

Aijmt(w) = exp

(
uc(yimt)

σθ

)
+ exp

(
uc(whi(w, yimt) + yimt)− uih(hi(w, yimt)) + bijt

σθ

)
+

(74)

+
∑
j′ ̸=j

exp

(
uc(wij′mthi(wij′mt) + yimt)− uih(hi(wij′mt)) + bij′mt

σθ

)
(75)

Bijmt(w) =
1

σθ

[
(whi(w, yimt) + yimt)

−σ − hi(w, yimt)
−γ ∂hi(w, yimt)

∂w

]
(76)

Cijmt(w) = exp

(
uc(whi(w, yimt) + yimt)− uih(hi(w, yimt)) + bijt

σθ

)
(77)

The function hi(w, y) can be solved numerically and the derivative ∂hi(w,y)
∂w can be com-

puted using the envelope theorem on the first order necessary conditions for hours. Dropping
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the subscripts for clarity, we obtain

(wh+ y)−σ w = ψh−γ (78)[
(wh+ y)−σ − σ(wh+ y)−σ−1wh

]
dw +

[
−σ(wh+ y)−σ−1w2

]
dh = −γψh−γ−1dh

∂h

∂w
=

(wh+ y)−σ − σ(wh+ y)−σ−1wh

σ(wh+ y)−σ−1w2 − γψh−γ−1

In the numerical implementation, we approximate the integral over the [0, wijmt] support

partitioned into 999 equal intervals. To approximate the function hi(w, yimt) we solve the

first order condition of hours worked over 500 equally spaced grid points of wages; then, we

use linear interpolation to compute the function for off-grid wage values.

Compensating Differentials. Consider a worker ι who is marginal in the current

occupation match j and whose next best match is with occupation j′. If a worker is marginal,

i.e. indifferent between the first choice and the second choice, then R̃ι
ijj′mt = 0 so that

equation (8) becomes

Ũi(wijmt − R̃ι
ijj′mt, yimt) + bijt + θιj = Ũi(wij′mt, yimt) + bij′t + θιj′

⇒ bijt + θιj − bij′t − θιj′ = Ũi(wij′mt, yimt)− Ũi(wijmt, yimt)

(79)

The compensating differential between j and j′ is the difference between the utility worker ι

gets by choosing its second best occupation if it was paid at the same rate as the preferred

occupation, and the utility they get from their actual choice. Note that the worker would

work the same amount of time if paid at the same rate, thus total income would be the same.

CDι
ijj′mt = Ũi(wijmt, yimt) + bij′t + θιj′ − Ũi(wijmt, yimt)− bijt − θιj

= bij′t + θιj′ − bijt − θιj
(80)

Substituting eq. (79) into (80), we have that

CDι
ijj′mt = Ũi(wijmt, yimt)− Ũi(wij′mt, yimt) = CDijj′mt (81)

Finally, we define the dollar value of the compensating differential as

uc(wijmthijmt + yimt − CD$
ijj′mt)− uh(hijmt) = uc(wij′mthij′mt + yimt)− uh(hij′mt) (82)

where hij′mt = hi(wijmt). The latter equation has the following closed form solution

CD$
ijj′mt = wijmthijmt + yimt − u−1

c

(
uc(wij′mthij′mt + yimt)− uh(hij′mt) + uh(hijmt)

)
. (83)
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K Alternative measures of compensating differentials

In this appendix, we relate our estimates of compensating differentials to the covariation be-

tween wage and latent components of compensation. The baseline definition of compensating

differentials focuses on the trade-offs faced by workers who are marginal in the occupation

choice. This measure fully accounts for unobserved idiosyncratic components of each marginal

worker’s valuation. The applied literature often gauges the magnitude of compensating differ-

entials from estimates of the covariance between wage and non-wage components of job values

(Lehmann, 2022). While informative these measures are based on a sample that includes both

marginal and inframarginal workers and do not include the idiosyncratic components of the

workers’ valuations. Through the lens of our model, the closest quantity to these measures is

the covariation between the value of observed wages and latent components of overall returns;

that is,

cov(uc(cijmt)− uih(hijmt), bijt).

We compute this covariance separately for each year and demographic group and we show the

results in Panel A of Table 25. We find a positive and increasing covariance for college gradu-

ates, with the growth being particularly pronounced among men. For non-college workers we

find negative covariations and a trend towards lower covariances among men. The positive

and increasing covariances for college men are in line with the findings of Lehmann (2022),

which restricts attention to male workers who experience job-to-job transitions. Transitions

that bypass unemployment tend to over-sample educated men, which is consistent with our

findings.

To extend our analysis, in Panel B of Table 25 we report similar measures of covariation

after including the average idiosyncratic workers’ valuations within each cell. The average

idiosyncratic job values θ̄ijmt are obtained by simulating the model. Specifically, we compute

the following covariances

cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt).

Results are sensitive to accounting for the idiosyncratic component of the non-wage values.

For all demographic groups, we find negative and diminishing covariances, which suggests the

presence of positive and increasing compensating differentials. This finding is in line with

results based on our baseline definition of compensating differentials, as discussed in the main

body of the paper.
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Panel A: cov(uc(cijmt)− uih(hijmt), bijt)

Year College Men College Women Non-College Men Non-College Women

1980 0.076 0.102 -0.031 -0.038
1990 0.090 0.085 -0.045 -0.035
2000 0.139 0.140 -0.058 -0.039
2010 0.129 0.130 -0.078 -0.039
2018 0.119 0.113 -0.074 -0.036

Panel B: cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt)

Year College Men College Women Non-College Men Non-College Women

1980 -0.046 -0.022 -0.011 -0.005
1990 -0.065 -0.016 -0.016 -0.007
2000 -0.076 -0.033 -0.016 -0.007
2010 -0.091 -0.041 -0.017 -0.010
2018 -0.115 -0.045 -0.017 -0.011

Table 25: Covariances between observable and latent components of employment surplus, by
year and demographic group. All covariances are normalized by the variance of idiosyncratic
values, σ2θ .

L Occupational mobility and compensating differentials

To the extent that workers can more freely trade off the observable and latent returns within

a job bundle, the relative value of the latent component should be better reflected in wage

gaps between jobs with higher worker mobility. This is because low occupational mobility

restricts these implicit transactions, possibly preventing some workers from moving to job

bundles that better suit their preferences.

Pairwise compensating differentials and job flows. We examine the relationship

between job mobility and compensating differentials by using workers’ gross flows across

occupations as a proxy for the cost of occupational mobility (see Cortes and Gallipoli, 2018).

We use retrospective data to measure annual occupational mobility from the March CPS (vom

Lehn et al., 2022) and obtain weighted flow data from the CPS. We match each model year

with the corresponding year in the CPS and the two adjacent years, to increase sample sizes.

Letting ξimt,j→j′ be the mass of people who flow from occupation j to j′, the baseline

measure of gross flows between two occupations is

Ξijj′mt =
ξimt,j→j′ + ξimt,j′→j

µijmt + µij′mt
(84)

Next, we project changes in compensating differentials between two occupations on changes
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in the gross flow of workers between the same occupations,

∆ log(CDijj′mt) = β0 + β1∆ log(Ξijj′mt) + ϵijj′mt (85)

If more intense job flows facilitate the emergence of systematic compensating differentials,

the estimated value of β1 should be positive. Table 26 illustrates our findings. Panel A (top

panel) reports estimates including all the years in the sample. Panel B (bottom panel) reports

results for the three decades after 2000.

Column (1) shows result for the full sample where all job pairs are considered, including

rarely observed job flows. Column (2) includes only (j, j′) occupation pairs in which both

occupations belong to the same occupation category. These are the occupation pairs where

most of the worker flows occur. The β1 coefficient are precisely estimated in the sub-sample

featuring common transitions, which suggests that considering all transitions adds more noise

than signal. Estimated elasticities are larger for the later years 2000-2018 (as opposed to the

full sample 1980-2018); on average, an increment of 1% in the gross flow of workers within

an occupation pair is associated with an increase of 8.7% (19.7% after the year 2000) in the

compensating differential between those occupations. Columns (3) to (6) lend similar evidence

but they consider each broad occupation category separately. The stronger significance for

non-routine cognitive (NRC) and routine-manual (RM) jobs is likely due to the much larger

sample sizes in those occupation categories. Columns (7) and (8) split the sample of Column

(2) by gender and show that the effects are larger and more precisely identified for men. This

latter observation is consistent with the finding that compensating differentials tend to be

lower among women (see table 5).

M Occupation-specific wage dispersion and rents

Some occupations may carry higher wage risk than others. For example, if there are differences

in the performance-based component of wages across jobs, one might observe differences

in the dispersion of ex-post pay. In this section, we examine whether workers in riskier

occupations are compensated for higher wage uncertainty. To answer this question we compute

the standard deviation of wage rates within each ijmt-cell and use it as a reference measure

of wage risk for each ijmt worker-occupation-market triplet. Then, within a ijmt cell, we

compute four distinct outcomes (that is, four measures of occupation returns) and separately

project each return measure on the corresponding standard deviation of wages. The four

measures of returns are: (i) rents; (ii) total surplus; (iii) observable current wage in a job; and

(iv) occupation latent value. One should note that the latter two measures are the fundamental

components that add up to total surplus. To facilitate comparisons, we normalize total surplus

and its components by the standard deviation of total surplus so that the estimated coefficients
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convey information about the way total surplus components change with occupation-level

wage risk.

Table 27 reports the main findings of this exercise. For every dependent variable we first

run a regression with no controls; then we run a regression including demographic controls

(education, age, and gender fixed effects), occupation fixed effects, and year fixed effects. The

results indicate that higher wage risk is associated with higher returns. Estimates in Columns

1 and 2 are semi-elasticities. Column 2, in particular, shows that a 10-dollar increase in the

standard deviation of wages is associated with a 4.5% increase in rents. Moreover, Column

4 shows that the same increase in risk is associated with an increase of about 0.3 standard

deviations in total match surplus. Comparing this estimate to those in Columns 6 and 8

suggests that both the pecuniary and latent components of surplus contribute to the positive

risk-return relationship. In addition, they highlight that latent values are proportionally

larger, as a share of total surplus, in occupations characterized by higher wage risk.

N Robustness: market variation in latent returns

In what follows we perform a robustness check by estimating an alternative version of the

model where latent returns can vary across markets. To identify this specification we must

impose additional structure on latent returns

bijmt = bijt + bjm,

This implies that we cast latent returns as the sum of a demographic-and-occupation com-

ponent that can change over time (like in the baseline model) plus an additional term that

varies across market-occupation pairs. The latter reflects differences in the latent value of an

occupation that may depend on region-specific features such as climate, population density

or cultural and social aspects.

Table 28 shows estimates of the market-occupation component bjm. Identification requires

that all values must be estimated relative to a reference region-occupation. The table shows

that many coefficients are statistically significant. However, their values are not economically

significant as the magnitudes of the bjm terms are much smaller than the bijt components.

Through a variance decomposition, we show that the bjm contribution is less than one percent

of the total variation across the overall latent returns bijmt. We have verified that such

magnitudes are not sufficient to affect the subsequent estimation and results.
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Market (Census Region)
Occupation Northeast Midwest South West

Exec., Admin., Manag. 0.0000 0.0000 0.0000 0.0000
( 0.0000) ( 0.0000) ( 0.0000) ( 0.0000)

Manag. rel. 0.0000 0.0889*** -0.0142 -0.0124
( 0.0000) ( 0.0185) ( 0.0315) ( 0.0560)

Professional 0.0000 0.0858*** -0.0325** -0.0925***
( 0.0000) ( 0.0038) ( 0.0144) ( 0.0260)

Technicians 0.0000 0.1078*** 0.0586*** 0.0205***
( 0.0000) ( 0.0096) ( 0.0059) ( 0.0066)

Sales 0.0000 0.1494*** 0.0495 -0.0015
( 0.0000) ( 0.0227) ( 0.0406) ( 0.0521)

Admin. Support 0.0000 0.0746*** -0.0558*** -0.0999***
( 0.0000) ( 0.0043) ( 0.0084) ( 0.0304)

Protective Services 0.0000 -0.0996*** -0.0303 -0.1199***
( 0.0000) ( 0.0374) ( 0.0624) ( 0.0415)

Other Services 0.0000 0.0084 -0.0755*** 0.0454**
( 0.0000) ( 0.0069) ( 0.0060) ( 0.0182)

Mechanics 0.0000 0.1751*** 0.2289*** 0.1179***
( 0.0000) ( 0.0303) ( 0.0230) ( 0.0307)

Construction Traders 0.0000 0.0881*** 0.2391*** 0.1435***
( 0.0000) ( 0.0269) ( 0.0296) ( 0.0247)

Precision Prod. 0.0000 0.3965*** 0.0535*** -0.0976***
( 0.0000) ( 0.0203) ( 0.0108) ( 0.0203)

Machine Operators 0.0000 0.4452*** 0.0693*** -0.0775***
( 0.0000) ( 0.0284) ( 0.0107) ( 0.0138)

Transportation 0.0000 0.2612*** 0.0897*** -0.0200
( 0.0000) ( 0.0278) ( 0.0126) ( 0.0144)

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 28: Estimates of the market and occupation specific component of non-pecuniary re-
turns.
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O Additional tables

Average Rents (year 2000 $)

Year Non-Routine Cognitive Routine Cognitive Non-Routine Manual Routine Manual

1980 18,718 12,131 9,149 14,315
1990 19,414 12,803 9,199 13,248
2000 22,002 13,836 9,820 13,162
2010 21,615 12,655 8,401 11,448
2018 22,620 13,167 8,839 11,742

Table 29: Estimated average rents by year and occupation type.

Average Compensating Differentials (year 2000 $)

Year Non-Routine Cognitive Routine Cognitive Non-Routine Manual Routine Manual

1980 8,047 4,130 7,969 4,121
1990 8,945 5,111 8,885 5,330
2000 12,444 6,107 9,391 6,158
2010 10,922 6,228 9,495 6,106
2018 11,220 5,962 9,002 6,035

Table 30: Average absolute compensating differentials by year and occupation type.

Rents: 2018 vs 1980, by occupation category.

Cognitive Manual
Non-Routine Routine Non-Routine Routine

Baseline
1980 18,718 12,131 9,149 14,315
2018 22,620 13,167 8,839 11,742
Ratio 1.21 1.09 0.97 0.82

Latent values at 1980 level
Counterfactual ratio 1.24 1.08 1.31 0.75

Technology at 1980 level
Counterfactual ratio 0.92 1.12 0.84 1.18

Table 31: Actual and counterfactual changes in rents between 1980-2018. Values are ratios
of average rents in 2018 to average rents in 1980.
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