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E Production sector: derivations

In this appendix, we report all the derivations concerning the production function. To reduce

notation cluttering we omit the time and market indexes in all the equations.

We begin by considering the intermediate firm’s problem in eq. (5) that, plugging the

constraints into the objective function, becomes

max
Lijv

PY (1−ρ)zρjv

(∑
i

βijLijv

)ρ

−
∑
i

w̃ijLijv (30)

the associated first order condition is

w̃ij = PY (1−ρ)zρjvρ

(∑
i′

βi′jLi′jv

)ρ−1

βij (31)

For any two firms v, v′ ∈ Vj the latter gives

zρjv

(∑
i

βijLijv

)ρ−1

= zρjv′

(∑
i

βijLijv′

)ρ−1

(32)

∑
i

βijLijv′ =
z

ρ
ρ−1

jv

z
ρ

ρ−1

jv′

∑
i

βijLijv (33)

Integrating over v′ ∈ Vj we get

∑
i

βijLij = z
ρ

ρ−1

jv

∫
v′∈Vj

1

z
ρ

ρ−1

jv′

dv′
∑
i

βijLijv (34)

∑
i

βijLijv = z
−ρ
ρ−1

jv

∫
v′∈Vj

1

z
ρ

ρ−1

jv′

dv′

−1∑
i

βijLij (35)
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The aggregate production function is given by

Y =

(∫
v

υρjvdv

) 1
ρ

(36)

=

(∑
j

∫
v∈Vj

υρjvdv

) 1
ρ

(37)

=

(∑
j

∫
v∈Vj

zρjv

(∑
i

βijLijv

)ρ

dv

) 1
ρ

(38)

Using (35) this gives

Y =

[∑
j

∫
v∈Vj

zρjv

(∑
i

βijLijv

)ρ

dv

] 1
ρ

(39)

=

∑
j

∫
v∈Vj

z
ρ

1−ρ

jv dv

∫
v′

1

z
ρ

ρ−1

jv′

dv′

−ρ(∑
i

βijLij

)ρ


1
ρ

(40)

=


∑
j

(∫
v∈Vj

z
ρ

1−ρ

jv dv

)1−ρ

︸ ︷︷ ︸
α̃j

(∑
i

βijLij

)ρ


1
ρ

(41)

=

[∑
j

α̃j

(∑
i

βijLij

)ρ] 1
ρ

(42)

= A

[∑
j

αj

(∑
i

βijLij

)ρ] 1
ρ

(43)

where αj =
α̃j∑
j′ α̃j′

and A =
(∑

j′ α̃j′

) 1
ρ
. Moreover, substituting (35) into (31) we have
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w̃ij = PY (1−ρ)ρ

(∫
v∈Vj

z
ρ

1−ρ

jv dv

)1−ρ

︸ ︷︷ ︸
α̃j

(∑
i′

βi′jLi′j

)ρ−1

βij (44)

w̃ij

P
= Y (1−ρ)ρα̃j

∑
j′ α̃j′∑
j′ α̃j′

(∑
i′

βi′jLi′j

)ρ−1

βij (45)

wij = ρAραjβij

(
Y∑

i′ βi′jLi′j

)(1−ρ)

(46)

where wij =
w̃ij

P
.

F Model with capital inputs

The setup is similar to the baseline model. Here, we assume that intermediate good producers

also use capital in production. They solve

max
pjv ,λjv ,Lijv

pjvλjv −
∑
i

w̃ijLijv − rKjv (47)

s.t. λjv = zjv

(∑
i

βijLijv

)γ

(ηjKjv)
1−γ (48)

pjv =

[
λjv
Y

]−(1−ρ)

P (49)

Equivalently

max
Lijv

PY (1−ρ)zρjv

(∑
i

βijLijv

)ργ

(ηjKjv)
ρ(1−γ) −

∑
i

w̃ijLijv − rKjv (50)

The associated first order conditions are

w̃ij = PY (1−ρ)zρjvργ

(∑
i′

βi′jLi′jv

)ργ−1

(ηjKjv)
ρ(1−γ) βij (51)

and

r = PY (1−ρ)zρjvρ (1− γ)

(∑
i′

βi′jLi′jv

)ργ

(ηjKjv)
ρ(1−γ)−1 ηj (52)
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Dividing the two first order conditions by each other we get

w̃ij

r
= βij

γ

1− γ

Kjv∑
i′ βi′jLi′jv

⇒ Kjv =
wij (1− γ)

rγβij

∑
i′

βi′jLi′jv (53)

Notice that this implies

Kjv∑
i′ βi′jLi′jv

=
w̃ij (1− γ)

rγβij
=

Kj∑
i′ βi′jLi′j

(54)

where Kj =
∫
v′∈Vj

Kjvdv and Lij =
∫
v′∈Vj

Lijvdv.

Using (53) into (51) we get

w̃ij =

(
w̃ij

r

)ρ(1−γ)

PY (1−ρ)zρjvργ
1−ρ(1−γ) (1− γ)ρ(1−γ) η

ρ(1−γ)
j

(∑
i′

βi′jLi′jv

)ρ−1

β
1−ρ(1−γ)
ij

(55)

wij = Ξη
ρ(1−γ)

1−ρ(1−γ)

j z
ρ

1−ρ(1−γ)

jv βij

(∑
i′

βi′jLi′jv

) ρ−1
1−ρ(1−γ)

(56)

where Ξ =

[
Y (1−ρ)ργ

(
1−γ
rγ

)ρ(1−γ)
] 1

1−ρ(1−γ)

and wij =
w̃ij

P
as before.

Notice that (56) implies the same relationship described in (33) and, thus, equation (35).

Using (35) in (56) we get

wij = ΞΛjβij

(∑
i′

βi′jLi′j

) ρ−1
1−ρ(1−γ)

(57)

where Λj = η
ρ(1−γ)

1−ρ(1−γ)

j

(∫
v∈Vj

1

z
ρ

ρ−1
jv

dv

) 1−ρ
1−ρ(1−γ)

. Dividing the latter by the same equation for

j = 1 and taking logs

log

(
wij

wi2

)
= log

(
Λj

Λ1

)
+ log

(
βij
βi1

)
+

ρ− 1

1− ρ(1− γ)
log

(∑
i′ βi′jLi′j∑
i′ βi′1Li′1

)
(58)

The empirical counterpart of this equation is equivalent to that in the paper.

Wijmt = γjt + ψB̂ijt + ϕΛ̂jmt + ϵijmt (59)

However, it is not possible to recover the value of all the structural parameters from the

estimated reduced form equation.
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The elasticity of substitution in production. In the baseline model we have ϕ =

ρbase − 1. In this generalized model, however, ϕ = ρ−1
1−ρ(1−γ)

. Thus

1− ρbase =
1− ρ

1− ρ(1− γ)
(60)

If ρ ∈ [0, 1], then 1− ρ(1− γ) ∈ [0, 1] and 1− ρbase > 1− ρ, that is

ρbase < ρ (61)

This implies that if the baseline estimate ρbase is a lower bound of the curvature parameter

ρ.

Assuming γ = 2/3, a common choice in the literature, the baseline estimate of ϕ̂ = −0.61

delivers ρ = 0.49 which implies an elasticity of substitution of about 1.96.

G Shift-share instrument

In this appendix, we provide an additional instrumental variable to estimate the parame-

ters governing labor demand. The model suggests that differences in the labor participation

(headcount) in each occupation over time are the by-product of worker match values, condi-

tional on their demographic group, or due to shifts in the overall demographic composition

of the labor force.

The instrumental variable developed in this appendix leverages aggregate demographic

shifts that exogenously impact local labor markets, holding constant the occupation shares of

workers within a market and demographic group. We let sijmt be the share of type i workers

in market m choosing to work in occupation j. The predicted labor supply to occupation j

is L̂h
jmt =

∑
i sijmt−10µimt, where h denotes the headcount and sijmt−10 are the employment

shares in the previous decade. We use the latter measure to construct the predicted relative

supply Λ̂h
jmt = log

(
L̂h
jmt

L̂h
1mt

)
in period t. The instrument is defined as

IVjmt = ∆Λ̂h
jmt = Λ̂h

jmt − log

(
Lh
jmt−10

Lh
1mt−10

)
(62)

where Lh
jmt−10 is the actual number of workers in occupation j in market m at time t− 10.

Given exogeneity of aggregate shifts in the demographic structure of the labor force, this is

a valid instrument as it is correlated with the regressor but is uncorrelated with the error

term.
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OLS IV
(1) (2)

ϕ̂ -0.0834 -0.6041***
( 0.0610) ( 0.1665)

ψ̂ 0.9771*** 0.9771***
( 0.0413) ( 0.0413)

Observations 2,496 2,496

Test ψ̂ = 1 (p-val) 0.5796 0.5798
Implied ρ 0.9166*** 0.3959**

( 0.0610) ( 0.1665)
Implied elast. of sub. 11.9974 1.6554

( 58.5230) (100.5079)
Bootstrapped standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 9: Estimation results for equation (13) in first differences using the Bartik instrument.

Table 9 shows that the estimation results using the Bartik instrument are comparable to

the results presented in the main text.

G.1 Technology shares by worker group: match level estimates

Figure 6 breaks down changes in production shares by worker type and shows that the share

of routine manual occupations dropped or stagnated for all gender and education groups.

Workers in college-level jobs experienced large gains in all but routine manual occu-

pations. College-level gains in cognitive occupations are the largest, suggesting a growing

match-specific return. However, a college degree did not significantly improve productivity

in manual occupations.
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Figure 6: Average production shares of four broad occupation categories by worker demo-
graphic group (based on estimates of αjtβijt). Brackets are 95-percent confidence intervals
around point estimates.
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H Robustness: model with flexible disutility of work

In this appendix, we consider a model in which we allow the disutility of work to be a flexible

function of both demographic (as it is in he main text) and occupation. The exercise aims

at exploring the possibility that there is some important hidden heterogeneity of workers’

preferences for different occupations that might be relevant for our analysis of rents and

compensating differentials. It is no surprise that the more flexible model can better explain

the variability of hours worked in the data but, as we show here, our results concerning rents

and compensating differentials are not substantially affected.

In practice we re-estimate the model using a more flexible specification for the utility

cost of hours worked, namely

uih (h) = ψij
h1−γ

1− γ
.

With this specification, within each demographic group workers are allowed to value time

spent at work differently. Figure 7 shows the goodness of fit for this model. Just like the

baseline model, the enriched model can explain 99% and 95% of the variation in employment

and wages. Yet it performs better in terms of hours worked explaining 87% of total variation.

Despite the improvement in terms of goodness of fit, Table 11, which is the counterpart

of Table 5, show that the flexible model produces comparable compensating differentials. As

for rents, Table 10, the counterpart of Table 3, shows that the model produces slightly lower

rents but growth patterns are comparable to those in the main text.
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Figure 7: Goodness of fit. Left: model implied wages vs. data. Center: model implied
employment vs. data. Right: model implied hours worked vs. data.
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Average Rents (year 2000 $)
Year All College Men College Women Non-College Men Non-College Women
1980 12,700 20,559 11,697 13,891 7,737
1990 12,915 22,093 13,374 13,054 8,301
2000 14,035 24,813 15,242 13,110 8,979
2010 13,100 23,983 15,134 11,210 7,994
2018 13,966 24,798 15,938 11,366 8,044

Table 10: Estimated average rents by year and demographic group.

Average Compensating Differentials (year 2000 $)
Year All College Men College Women Non-College Men Non-College Women
1980 5,537 9,499 6,765 5,185 3,861
1990 6,513 10,374 7,077 6,162 5,042
2000 8,116 15,641 8,437 7,213 5,724
2010 7,715 12,759 9,022 6,734 6,355
2018 7,655 14,078 9,560 6,688 5,489

Table 11: Average absolute compensating differentials by year and demographic group.

I Analytical derivations: rents and compensating dif-

ferentials

Employment rents. Average rents can be computed by solving the following integral

(see for example Lamadon et al., 2022):

Rijmt = E[Rι
ijmt] (63)

=

∫ wijmt

0

(wijmthijmt − whi(w, yimt))
1

µijmt(wijmt)

∂µijmt(w)

∂w
dw (64)

where µijmt(wijmt) is the conditional labor supply function. The term

fijmt(w) =
1

µijmt(wijmt)

∂µijmt(w)

∂w
(65)

is the conditional density function of the distribution of the reservation wage of workers

of type i choosing to work in j. In other words, fijmt(w) denotes the mass of workers of

type i in market j and time t who chose occupation j and who are indifferent between their

chosen occupation and the second best option if the prevailing wage is w. The distribution of

reservation wages has a mass at w = 0 since certain workers would always choose occupation

j even if the wage rate was equal to zero.
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Before solving the integral numerically, we note that

∂µijmt(w)

∂w
= Bijmt(w)Cijmt(w)

Aimt(w)− Cijmt(w)

A2
ijmt(w)

µimt (66)

where

Aijmt(w) = exp

(
uc(yimt)

σθ

)
+ exp

(
uc(whi(w, yimt) + yimt)− uih(hi(w, yimt)) + bijt

σθ

)
+

(67)

+
∑
j′ ̸=j

exp

(
uc(wij′mthi(wij′mt) + yimt)− uih(hi(wij′mt)) + bij′mt

σθ

)
(68)

Bijmt(w) =
1

σθ

[
(whi(w, yimt) + yimt)

−σ − hi(w, yimt)
−γ ∂hi(w, yimt)

∂w

]
(69)

Cijmt(w) = exp

(
uc(whi(w, yimt) + yimt)− uih(hi(w, yimt)) + bijt

σθ

)
(70)

The function hi(w, y) can be solved numerically and the derivative ∂hi(w,y)
∂w

can be com-

puted using the envelope theorem on the first order necessary conditions for hours. Dropping

the subscripts for clarity, we obtain

(wh+ y)−σ w = ψh−γ (71)[
(wh+ y)−σ − σ(wh+ y)−σ−1wh

]
dw +

[
−σ(wh+ y)−σ−1w2

]
dh = −γψh−γ−1dh

∂h

∂w
=

(wh+ y)−σ − σ(wh+ y)−σ−1wh

σ(wh+ y)−σ−1w2 − γψh−γ−1

In the numerical implementation, we approximate the integral over the [0, wijmt] support

partitioned into 999 equal intervals. To approximate the function hi(w, yimt) we solve the

first order condition of hours worked over 500 equally spaced grid points of wages; then, we

use linear interpolation to compute the function for off-grid wage values.

Compensating Differentials. Consider a worker ι who is marginal in the current

occupation match j and whose next best match is with occupation j′. If a worker is marginal,

i.e. indifferent between the first choice and the second choice, then R̃ι
ijj′mt = 0 so that
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equation (8) becomes

Ũi(wijmt − R̃ι
ijj′mt, yimt) + bijt + θιj = Ũi(wij′mt, yimt) + bij′t + θιj′

⇒ bijt + θιj − bij′t − θιj′ = Ũi(wij′mt, yimt)− Ũi(wijmt, yimt)

(72)

The compensating differential between j and j′ is the difference between the utility worker ι

gets by choosing its second best occupation if it was paid at the same rate as the preferred

occupation, and the utility they get from their actual choice. Note that a worker would work

the same amount of time if paid at the same rate, thus total income is unchanged.

CDι
ijj′mt = Ũi(wijmt, yimt) + bij′t + θιj′ − Ũi(wijmt, yimt)− bijt − θιj

= bij′t + θιj′ − bijt − θιj
(73)

Substituting eq. (72) into (73), we have that

CDι
ijj′mt = Ũi(wijmt, yimt)− Ũi(wij′mt, yimt) = CDijj′mt (74)

Combining equations (73) and (74) we obtain Proposition 1. Finally, we define the dollar

value of the compensating differential as

uc(wijmthijmt + yimt − CD$
ijj′mt)− uh(hijmt) = uc(wij′mthij′mt + yimt)− uh(hij′mt) (75)

where hij′mt = hi(wijmt). The latter equation has the following closed form solution

CD$
ijj′mt = wijmthijmt+yimt− (uc)

−1 (uc(wij′mthij′mt + yimt)− uh(hij′mt) + uh(hijmt)) . (76)

J Alternative measures of compensating differentials

In this appendix, we relate our estimates of compensating differentials to the covariation

between wage and latent components of compensation. The baseline definition of com-

pensating differentials focuses on the trade-offs faced by workers who are marginal in the

occupation choice. This measure fully accounts for unobserved idiosyncratic components

of each marginal worker’s valuation. The applied literature often gauges the magnitude

of compensating differentials from estimates of the covariance between wage and non-wage

components of job values (Lehmann, 2022). While informative these measures are based

on a sample that includes both marginal and inframarginal workers and do not include the
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idiosyncratic components of the workers’ valuations. Through the lens of our model, the

closest quantity to these measures is the covariation between the value of observed wages

and latent components of overall returns, that is

cov(uc(cijmt)− uih(hijmt), bijt).

We compute this covariance separately for each year and demographic group and we show the

results in Panel A of Table 12. We find a positive and increasing covariance for college gradu-

ates, with the growth being particularly pronounced among men. For non-college workers we

find negative covariations and a trend towards lower covariances among men. The positive

and increasing covariances for college men are in line with the findings of Lehmann (2022),

which restricts attention to male workers who experience job-to-job transitions. Transitions

that bypass unemployment tend to over-sample educated men, which is consistent with our

findings.

To extend our analysis, in Panel B of Table 12 we report similar measures of covariation

after including the average idiosyncratic workers’ valuations within each cell. The average

idiosyncratic job values θ̄ijmt are obtained by simulating the model. Specifically, we compute

the following covariances

cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt).

Results are sensitive to accounting for the idiosyncratic component of the non-wage values.

For all demographic groups, we find negative and diminishing covariances, which suggests

the presence of positive and increasing compensating differentials. This finding is in line

with results based on our baseline definition of compensating differentials, as discussed in

the main body of the paper.

K Occupation-specific wage dispersion and rents

Some occupations may carry higher wage risk than others. For example, if there are dif-

ferences in the performance-based component of wages across jobs, one might observe dif-

ferences in the dispersion of ex-post pay. In this section, we examine whether workers in

riskier occupations are compensated for higher wage uncertainty. To answer this question we

compute the standard deviation of wage rates within each ijmt-cell and use it as a reference

measure of wage risk for each ijmt worker-occupation-market triplet. Then, within a ijmt

cell, we compute four distinct outcomes (that is, four measures of occupation returns) and

separately project each return measure on the corresponding standard deviation of wages.
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Panel A: cov(uc(cijmt)− uih(hijmt), bijt)

Year College Men College Women Non-College Men Non-College Women
1980 0.076 0.102 -0.031 -0.038
1990 0.090 0.085 -0.045 -0.035
2000 0.139 0.140 -0.058 -0.039
2010 0.129 0.130 -0.078 -0.039
2018 0.119 0.113 -0.074 -0.036

Panel B: cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt)

Year College Men College Women Non-College Men Non-College Women
1980 -0.046 -0.022 -0.011 -0.005
1990 -0.065 -0.016 -0.016 -0.007
2000 -0.076 -0.033 -0.016 -0.007
2010 -0.091 -0.041 -0.017 -0.010
2018 -0.115 -0.045 -0.017 -0.011

Table 12: Covariances between observable and latent components of employment surplus, by
year and demographic group. All covariances are normalized by the variance of idiosyncratic
values, σ2

θ .

The four measures of returns are: (i) rents; (ii) total surplus; (iii) observable current wage

in a job; and (iv) occupation latent value. One should note that the latter two measures

are the fundamental components that add up to total surplus. To facilitate comparisons,

we normalize total surplus and its components by the standard deviation of total surplus so

that the estimated coefficients convey information about the way total surplus components

change with occupation-level wage risk.

Table 13 reports the main findings of this exercise. For every dependent variable we first

run a regression with no controls; then we run a regression including demographic controls

(education, age, and gender fixed effects), occupation fixed effects, and year fixed effects.

The results indicate that higher wage risk is associated with higher returns. Estimates

in Columns 1 and 2 are semi-elasticities. Column 2, in particular, shows that a 10-dollar

increase in the standard deviation of wages is associated with a 4.5% increase in rents.

Moreover, Column 4 shows that the same increase in risk is associated with an increase of

about 0.3 standard deviations in total match surplus. Comparing this estimate to those

in Columns 6 and 8 suggests that both the pecuniary and latent components of surplus

contribute to the positive risk-return relationship. In addition, they highlight that latent

values are proportionally larger, as a share of total surplus, in occupations characterized by

higher wage risk.
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L Robustness: market variation in latent returns

In what follows we perform a robustness check by estimating an alternative version of the

model where latent returns can vary across markets. To identify this specification we must

impose additional structure on latent returns. We assume that

bijmt = bijt + bjm.

This implies that we cast latent returns as the sum of a demographic-and-occupation com-

ponent that can change over time (like in the baseline model) plus an additional term that

varies across market-occupation pairs. The latter reflects differences in the latent value of an

occupation that may depend on region-specific features such as climate, population density

or cultural and social aspects.

Table 14 shows estimates of the market-occupation component bjm. Identification requires

that all values must be estimated relative to a reference region-occupation. The table shows

that many coefficients are statistically significant. However, their values are not economically

significant as the magnitudes of the bjm terms are much smaller than the bijt components.

Through a variance decomposition, we show that the bjm contribution is less than one percent

of the total variation across the overall latent returns bijmt. We have verified that such

magnitudes are not sufficient to affect the subsequent estimation and results.

15



Market (Census Region)
Occupation Northeast Midwest South West

Exec., Admin., Manag. 0.0000 0.0000 0.0000 0.0000
( 0.0000) ( 0.0000) ( 0.0000) ( 0.0000)

Manag. rel. 0.0000 0.0889*** -0.0142 -0.0124
( 0.0000) ( 0.0185) ( 0.0315) ( 0.0560)

Professional 0.0000 0.0858*** -0.0325** -0.0925***
( 0.0000) ( 0.0038) ( 0.0144) ( 0.0260)

Technicians 0.0000 0.1078*** 0.0586*** 0.0205***
( 0.0000) ( 0.0096) ( 0.0059) ( 0.0066)

Sales 0.0000 0.1494*** 0.0495 -0.0015
( 0.0000) ( 0.0227) ( 0.0406) ( 0.0521)

Admin. Support 0.0000 0.0746*** -0.0558*** -0.0999***
( 0.0000) ( 0.0043) ( 0.0084) ( 0.0304)

Protective Services 0.0000 -0.0996*** -0.0303 -0.1199***
( 0.0000) ( 0.0374) ( 0.0624) ( 0.0415)

Other Services 0.0000 0.0084 -0.0755*** 0.0454**
( 0.0000) ( 0.0069) ( 0.0060) ( 0.0182)

Mechanics 0.0000 0.1751*** 0.2289*** 0.1179***
( 0.0000) ( 0.0303) ( 0.0230) ( 0.0307)

Construction Traders 0.0000 0.0881*** 0.2391*** 0.1435***
( 0.0000) ( 0.0269) ( 0.0296) ( 0.0247)

Precision Prod. 0.0000 0.3965*** 0.0535*** -0.0976***
( 0.0000) ( 0.0203) ( 0.0108) ( 0.0203)

Machine Operators 0.0000 0.4452*** 0.0693*** -0.0775***
( 0.0000) ( 0.0284) ( 0.0107) ( 0.0138)

Transportation 0.0000 0.2612*** 0.0897*** -0.0200
( 0.0000) ( 0.0278) ( 0.0126) ( 0.0144)

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 14: Estimates of the market and occupation specific component of non-pecuniary
returns.
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M Additional tables and results

M.1 Geography and urban amenities

The distribution of job opportunities is not homogeneous across geography. Some occupa-

tions are more concentrated in urban, densely populated areas while others are in rural,

less-dense areas. Different geographic areas are also characterized by different levels of local

amenities. As a consequence, the location of an occupation can also affect its attractiveness.

Arguably, urban areas tend to offer more and better amenities making occupations that

are concentrated in urban areas more attractive. To explore this relationship we regress our

estimates of latent returns on several measures of the geographic location of occupations.6

For each occupation we compute: (i) the fraction of workers living in urban areas, (ii) the

fraction of workers in a central city, defined as the central city of a metropolitan area, and the

fraction of workers in urban areas excluding central cities (this measure is not available for

1990), (iii) average local population (available after the year 2000). We project our estimates

of latent returns on these three measures separately for men and women.

Table 15 show the estimation results. Columns 1, 3, and 5 report the results from

regressing bijt on the geographic variables without any other control. For men the coefficients

are often not significant and the R2 is always very low (low explanatory power). For women

we have always significant coefficients and relatively high R2, which suggests that geography

is more important in determining the occupational choices of women than those of men.

In all cases, the coefficients are positive: jobs in urban, dense areas are preferred. Adding

controls for age and education (columns 2, 5, and 6) makes the estimated coefficient bigger

and more significant for both men and women.

M.2 Rents and compensating differentials by occupation category

6A caveat is in order. We must proxy job location with workers’ residence. Given this data limitation,
a more flexible interpretation is that the local-amenity value of an occupation is determined by the local
amenities that a worker can access given the geographic constraints imposed by the chosen occupation.
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Men

(1) (2) (3) (4) (5) (6)
bijt bijt bijt bijt bijt bijt

Frac. in urban area 0.660 2.989∗∗

(0.728) (0.963)

Frac. in central city 4.659 5.095∗

(2.368) (2.342)

Frac. in urban area (non central) 0.424 2.547
(1.235) (1.424)

Population density 1.276∗∗∗ 1.319∗∗∗

(0.335) (0.309)

Constant -2.356∗∗∗ -4.240∗∗∗ -3.618∗∗∗ -4.720∗∗∗ -12.58∗∗∗ -13.25∗∗∗

(0.603) (0.781) (0.821) (0.978) (2.801) (2.597)
Observations 390 390 312 312 234 234
R2 0.002 0.191 0.016 0.186 0.059 0.230
Age and Education FE No Yes No Yes No Yes
Year FE No Yes No Yes No Yes

Women

(1) (2) (3) (4) (5) (6)
bijt bijt bijt bijt bijt bijt

Frac. in urban area 10.57∗∗∗ 18.99∗∗∗

(1.164) (1.576)

Frac. in central city 36.58∗∗∗ 44.90∗∗∗

(3.465) (3.516)

Frac. in urban area (non central) 4.220∗ 9.527∗∗∗

(1.808) (2.138)

Population density 5.856∗∗∗ 6.017∗∗∗

(0.460) (0.460)

Constant -12.13∗∗∗ -19.06∗∗∗ -17.69∗∗∗ -22.96∗∗∗ -52.12∗∗∗ -53.69∗∗∗

(0.965) (1.279) (1.202) (1.468) (3.839) (3.863)
Observations 390 390 312 312 234 234
R2 0.175 0.300 0.330 0.416 0.411 0.433
Age and Education FE No Yes No Yes No Yes
Year FE No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 15: Results for job location.
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Average Rents (year 2000 $)
Year Non-Routine Cognitive Routine Cognitive Non-Routine Manual Routine Manual
1980 18,718 12,131 9,149 14,315
1990 19,414 12,803 9,199 13,248
2000 22,002 13,836 9,820 13,162
2010 21,615 12,655 8,401 11,448
2018 22,620 13,167 8,839 11,742

Table 16: Estimated average rents by year and occupation type.

Average Compensating Differentials (year 2000 $)
Year Non-Routine Cognitive Routine Cognitive Non-Routine Manual Routine Manual
1980 8,047 4,130 7,969 4,121
1990 8,945 5,111 8,885 5,330
2000 12,444 6,107 9,391 6,158
2010 10,922 6,228 9,495 6,106
2018 11,220 5,962 9,002 6,035

Table 17: Average absolute compensating differentials by year and occupation type.

Rents: 2018 vs 1980, by occupation category.

Cognitive Manual
Non-Routine Routine Non-Routine Routine

Baseline
1980 18,718 12,131 9,149 14,315
2018 22,620 13,167 8,839 11,742
Ratio 1.21 1.09 0.97 0.82

Latent values at 1980 level
Counterfactual ratio 1.24 1.08 1.31 0.75

Technology at 1980 level
Counterfactual ratio 0.92 1.12 0.84 1.18

Table 18: Actual and counterfactual changes in rents between 1980-2018. Values are ratios
of average rents in 2018 to average rents in 1980.
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M.3 Various counterfactual exercises

CD 2018 ÷ CD 1980 All College Non-College
Men Women Men Women

(1) Baseline
Estimated growth 1.38 1.45 1.48 1.29 1.42

(2) Hold latent values at 1980 levels
Counterfactual growth 1.49 1.67 1.55 1.4 1.42

(3) Hold technology at 1980 levels
Counterfactual growth 1.39 1.13 0.69 1.73 1.37

Table 19: Counterfactual vs baseline growth of compensating differentials (2018-2000) by
worker group.

Rents 2000 ÷ Rents 1980 College Non-College
Men Women Men Women

(1) Baseline
Estimated growth 1.21 1.28 0.94 1.17

(2) Hold latent values at 1980 levels
Counterfactual growth 1.24 1.27 0.95 1.17

(3) Hold technology at 1980 levels
Counterfactual growth 1.01 0.95 1.03 0.99

Table 20: Counterfactual vs baseline growth of average rents (2000-1980) by worker group.
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Rents 2018 ÷ Rents 2000 College Non-College
Men Women Men Women

(1) Baseline
Estimated growth 1 1.04 0.87 0.9

(2) Hold latent values at 1980 levels
Counterfactual growth 1.01 1.03 0.88 0.93

(3) Hold technology at 1980 levels
Counterfactual growth 0.97 0.98 1.02 0.99

Table 21: Counterfactual vs baseline growth of average rents (2018-2000) by worker group.
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